The emission of hydrogen sulfide (H2 S) from municipal solid waste is one of the environmental issues that raised the public’s attention and awareness. Exposure to H2 S that brings a foul smell of rotten eggs will cause headaches, irritation, dizziness, fatigue, and even death if the concentration of H2 S is too high. The study’s goals are to investigate the properties of biochars made from rice hulls, banana peels, and sawdust; to compare the biochars’ physical and chemical properties; and establish the H2 S removal efficiency of the three biochars. Biochars derived from rice hull (RHB-500), banana peel (BPB-550), and sawdust (SDB-500) by pyrolysis were used as the adsorbents. The biochar yield, pH, ash content, surface functional group, and morphology of the biochars produced were investigated. In this study, H2 S was synthesized by mixing food waste and soil in the experimental column. The H2S produced was reduced by the adsorption method. The removal efficiencies of H2 S for each biochar were determined by allowing the synthetic H2 S to flow through the two columns that were packed with sand (act as control) and biochars, respectively. All biochars were alkaline, and BPB-550 had the highest pH, followed by SDB-500 and finally RHB-500. The order for removal efficiency of H2 S (>94%) is BPB-550 > SDB-500 > RHB-500. Overall, the biochars derived from biomass had a strong ability to act as the adsorbents for H2S removal.