Home
  • English
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Latviešu
  • Magyar
  • Nederlands
  • Português
  • Português do Brasil
  • Suomi
  • Log In
    New user? Click here to register. Have you forgotten your password?
Home
  • Browse Our Collections
  • Publications
  • Researchers
  • Research Data
  • Institutions
  • Statistics
    • English
    • Čeština
    • Deutsch
    • Español
    • Français
    • Gàidhlig
    • Latviešu
    • Magyar
    • Nederlands
    • Português
    • Português do Brasil
    • Suomi
    • Log In
      New user? Click here to register. Have you forgotten your password?
  1. Home
  2. Resources
  3. UniMAP Index Publications
  4. Publications 2024
  5. A Fully-Bioresorbable Nanostructured Molybdenum Oxide-Based Electrode for Continuous Multi-Analyte Electrochemical Sensing
 
Options

A Fully-Bioresorbable Nanostructured Molybdenum Oxide-Based Electrode for Continuous Multi-Analyte Electrochemical Sensing

Journal
Advanced Materials Interfaces
Date Issued
2024-01-01
Author(s)
Fernandes C.
Franceschini F.
Smets J.
Deschaume O.
Nurul Izni Rusli
Universiti Malaysia Perlis
Bartic C.
Ameloot R.
Baert K.
Ustarroz J.
Taurino I.
DOI
10.1002/admi.202400054
Abstract
Bioresorbable electrochemical sensors remain mostly unexplored despite their ability to provide continuous in situ measurements of critical biomarkers. The primary challenge arises from the direct exposure of the electrodes’ thin metal films to biofluids, which poses difficulties in ensuring both proper operational lifetimes and sensing performance. Molybdenum (Mo) presents itself as a promising biometal due to its uniquely gradual dissolution in biofluids, facilitated by the formation of a slower-dissolving MoOx surface layer. Consequently, carefully engineered MoOx films can endow transient electrochemical sensors with unparalleled stability during extended operational lifetimes. Herein an unprecedented sensor architecture achieved via the unique pairing of sputtered Mo and MoOx thin films, probed as a pH and dissolved oxygen sensor is reported. Compared to a bare Mo electrode, a bilayer Mo+MoOx electrode subjected to post-deposition annealing (400 °C, 60 min, N2 environment) displayed a largely improved stability (>24 h) in solution and demonstrated predictable functionality during ongoing film dissolution at 37 °C. Collectively, this work establishes a pioneering strategy for the fabrication of reliable and clinically relevant implantable electrochemical sensors.
Funding(s)
Fonds Wetenschappelijk Onderzoek
Subjects
  • bioresorbable electro...

File(s)
research repository notification.pdf (4.4 MB)
Views
1
Acquisition Date
Nov 19, 2024
View Details
google-scholar
Downloads
  • About Us
  • Contact Us
  • Policies