Home
  • English
  • ÄŒeÅ¡tina
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • LatvieÅ¡u
  • Magyar
  • Nederlands
  • Português
  • Português do Brasil
  • Suomi
  • Log In
    New user? Click here to register. Have you forgotten your password?
Home
  • Browse Our Collections
  • Publications
  • Researchers
  • Research Data
  • Institutions
  • Statistics
    • English
    • ÄŒeÅ¡tina
    • Deutsch
    • Español
    • Français
    • Gàidhlig
    • LatvieÅ¡u
    • Magyar
    • Nederlands
    • Português
    • Português do Brasil
    • Suomi
    • Log In
      New user? Click here to register. Have you forgotten your password?
  1. Home
  2. Resources
  3. UniMAP Index Publications
  4. Publications 2023
  5. First Principles Enhanced Electronic Band Structure of Back Contact in CdTe Solar Cells using DFT+U Method
 
Options

First Principles Enhanced Electronic Band Structure of Back Contact in CdTe Solar Cells using DFT+U Method

Journal
IWAIIP 2023 - Conference Proceeding: International Workshop on Artificial Intelligence and Image Processing
Date Issued
2023-01-01
Author(s)
Ahmad N.I.
Nurhafiza Azizan
Universiti Malaysia Perlis
Kar Y.B.
Doroody C.
Syahrun Nizam Md Arshad @ Hashim
Universiti Malaysia Perlis
Ahmad Zaidi Abdullah
Universiti Malaysia Perlis
Jamal A.
DOI
10.1109/IWAIIP58158.2023.10462789
Abstract
Cadmium telluride (CdTe) superstrate solar cells have captivated the industry with their remarkable cost-effectiveness. However, optimizing the composition and optoelectrical properties of optimal back surface field (BSF) which can act as a lattice matching interface between the back contact and absorber layer remains a key challenge due to the work function disparity of p-CdTe with metal contacts. In this study, the influence of the Hubbard U parameter on the calculated electronic properties of ZnTe as an optimal BSF compound is presented using the density functional theory (DFT) technique. The Hubbard U value progressively increased from 1 to 4.2 to analyze its influence on the band diagram and Total Density of States (TDOS) in a full comparison of DFT and DFT+U approaches. As the value of Hubbard U increased, the band gap energy exhibited a corresponding increase from 1.20 eV to 2.24 eV, respectively. In comparison, the DFT+U approach with a value of 4.2 exhibited superior accuracy in predicting the band gap of ZnTe, yielding a value of 2.24 eV that closely approximated experimental measurements. This finding reinforces the relevance of employing Hubbard U to achieve more accurate and reliable band gap values for any material doping.
Funding(s)
Universiti Malaysia Perlis
Subjects
  • CdTe solar cell | Den...

File(s)
research repository notification.pdf (4.4 MB)
Views
1
Acquisition Date
Nov 19, 2024
View Details
google-scholar
Downloads
  • About Us
  • Contact Us
  • Policies