Home
  • English
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Latviešu
  • Magyar
  • Nederlands
  • Português
  • Português do Brasil
  • Suomi
  • Log In
    New user? Click here to register. Have you forgotten your password?
Home
  • Browse Our Collections
  • Publications
  • Researchers
  • Research Data
  • Institutions
  • Statistics
    • English
    • Čeština
    • Deutsch
    • Español
    • Français
    • Gàidhlig
    • Latviešu
    • Magyar
    • Nederlands
    • Português
    • Português do Brasil
    • Suomi
    • Log In
      New user? Click here to register. Have you forgotten your password?
  1. Home
  2. Resources
  3. UniMAP Index Publications
  4. Publications 2022
  5. Integrating advanced Keggin-structure polyoxometalate into polymeric membrane to enhance photocatalytic self-cleaning and antifouling functionalities
 
Options

Integrating advanced Keggin-structure polyoxometalate into polymeric membrane to enhance photocatalytic self-cleaning and antifouling functionalities

Journal
Korean Journal of Chemical Engineering
ISSN
02561115
Date Issued
2022-04-01
Author(s)
Koo D.C.H.
Tan N.N.
Ng Qi Hwa
Universiti Malaysia Perlis
Siti Kartini Enche Ab Rahim
Universiti Malaysia Perlis
Low S.C.
Yeo R.Y.Z.
DOI
10.1007/s11814-021-0945-7
Abstract
The high photocatalytic activity of environmentally benign Keggin-type polyoxometalate (POM) was introduced into polyethersulfone (PES) membrane to promote membrane anti-fouling and self-cleaning functionality. Neat PES and POM/PES hybrid membranes were synthesized via phase inversion method. X-ray diffraction (XRD) and attenuated total reflection-Fourier transform infrared (ATR-FTIR) spectroscopy proved the success of synthesizing Keggin-type POM. The traits of the membranes were evaluated using scanning electron microscopy (SEM), ATR-FTIR, contact angle measurement, porosity and porometer. The hydrophilicity of all the POM/PES hybrid membranes was enhanced and resulted in the reduction of contact angle of the membrane (52.21±0.1101°, 45.11±0.6657° and 50.30±0.1054°) for 0.025, 0.05 and 0.1 wt% POM/PES hybrid membranes, respectively, compared to that of the neat PES membrane (57.30±0.0817°). Additionally, all the POM/PES hybrid membranes showed excellent anti-fouling and self-cleaning characteristics as compared to that of the neat PES membrane. 0.05 wt% POM/PES hybrid membrane outstood all the other membranes, which marks the HA rejection at 77.12% and was able to achieve flux recovery ratio (FRR) of 111.34% with temporal superhydrophilicity effect in just merely 150 seconds at 254 nm UV irradiation.
Funding(s)
Ministry of Higher Education, Malaysia
Subjects
  • High Efficiency Photo...

File(s)
Research repository notification.pdf (4.4 MB)
google-scholar
Views
Downloads
  • About Us
  • Contact Us
  • Policies