Home
  • English
  • ÄŚeština
  • Deutsch
  • Español
  • Français
  • GĂ idhlig
  • Latviešu
  • Magyar
  • Nederlands
  • PortuguĂŞs
  • PortuguĂŞs do Brasil
  • Suomi
  • Log In
    New user? Click here to register. Have you forgotten your password?
Home
  • Browse Our Collections
  • Publications
  • Researchers
  • Research Data
  • Institutions
  • Statistics
    • English
    • ÄŚeština
    • Deutsch
    • Español
    • Français
    • GĂ idhlig
    • Latviešu
    • Magyar
    • Nederlands
    • PortuguĂŞs
    • PortuguĂŞs do Brasil
    • Suomi
    • Log In
      New user? Click here to register. Have you forgotten your password?
  1. Home
  2. Resources
  3. UniMAP Index Publications
  4. Publications 2024
  5. Suppresion of sommerfeld effect in power transmission system employing cardan shaft through phase angle arragement
 
Options

Suppresion of sommerfeld effect in power transmission system employing cardan shaft through phase angle arragement

Journal
Jurnal Teknologi
ISSN
01279696
Date Issued
2024-07-01
Author(s)
Omar M.H.
Muhajir Ab. Rahim
Universiti Malaysia Perlis
Mohd Noor Arib Md Rejab
Universiti Malaysia Perlis
Rani M.N.A.
DOI
10.11113/jurnalteknologi.v86.21123
Abstract
In a power transmission system with a cardan shaft, the Sommerfeld effect occurs, which is characterized by speed capture and release at the resonance range. Suppression of the Sommerfeld effect is critical for smooth and reliable operation. This study aims to suppress the Sommerfeld effect in a transmission system by compensating the phase angle between the two universal joints installed in the cardan shaft. The differential equations of motion representing the dynamics of the system are derived using the Lagrange equation. The responses are simulated numerically using the Runge–Kutta algorithm for scenarios with constant and gradually varying input torque. To suppress the Sommerfeld effect, the phase angle is set to 25%, 50%, 75% and 100% of the maximum twist angle observed in the subcritical speed range of the in-phase configuration. With the phase angle of 25%, the Sommerfeld effect is damped, where the output speed only deviates by 5% from the estimated value for both input torque scenarios. It is shown how the change of the phase angle attenuates the Sommerfeld effect and the system vibrations, which should be considered in the development and practical implementation.
Funding(s)
Ministry of Higher Education, Malaysia
Subjects
  • cardan shaft | phase ...

File(s)
Research repository notification.pdf (4.4 MB)
google-scholar
Views
Downloads
  • About Us
  • Contact Us
  • Policies