Home
  • English
  • ÄŒeÅ¡tina
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • LatvieÅ¡u
  • Magyar
  • Nederlands
  • Português
  • Português do Brasil
  • Suomi
  • Log In
    New user? Click here to register. Have you forgotten your password?
Home
  • Browse Our Collections
  • Publications
  • Researchers
  • Research Data
  • Institutions
  • Statistics
    • English
    • ÄŒeÅ¡tina
    • Deutsch
    • Español
    • Français
    • Gàidhlig
    • LatvieÅ¡u
    • Magyar
    • Nederlands
    • Português
    • Português do Brasil
    • Suomi
    • Log In
      New user? Click here to register. Have you forgotten your password?
  1. Home
  2. Resources
  3. UniMAP Index Publications
  4. Publications 2022
  5. Functionalized carbon black in epoxy composites: effect of single- and dual-matrix systems
 
Options

Functionalized carbon black in epoxy composites: effect of single- and dual-matrix systems

Journal
Polymer Bulletin
ISSN
01700839
Date Issued
2022-07-01
Author(s)
Phua J.L.
Teh Pei Leng
Universiti Malaysia Perlis
Yeoh C.K.
Voon Chun Hong
Universiti Malaysia Perlis
DOI
10.1007/s00289-021-03775-x
Abstract
Functionalized carbon black (CB) using three different surface modification methods: wet oxidation, epoxy monomer impregnation, and air oxidation, in single-epoxy composites and dual-matrix epoxy/poly(methyl methacrylate) PMMA composites at 15 vol% of CB content was studied in this research. The characterization on the surface modification CB was done via Fourier transform infrared spectroscopy, Brunauer–Emmett–Teller (BET), and thermal gravimetric analysis. The phenol or ether, carboxylic acid, and epoxide functional groups were found on CB after surface modifications, along with a change in structure and BET surface area. Thermal degradation of CB was different after surface modification. This study further investigated the effect of the addition of surface-modified CB into epoxy resin, where the state of dispersion and distribution was observed under scanning electron microscopy. After surface modification, the mechanical testing via flexural and fracture toughness was done, where improvement was observed. A minor decrease in the electrical bulk conductivity of the composites was measured, which was due to a reduction in the degree of agglomeration. Both the thermal stability and CTE of surface-modified CB-filled epoxy composites show a decrement. Graphic abstract: Chemical modification of CB using air oxidation, wet oxidation, and epoxy monomer impregnation methods.[Figure not available: see fulltext.]
Subjects
  • Carbon black | Conduc...

File(s)
Research repository notification.pdf (4.4 MB)
google-scholar
Views
Downloads
  • About Us
  • Contact Us
  • Policies