Home
  • English
  • ÄŒeÅ¡tina
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • LatvieÅ¡u
  • Magyar
  • Nederlands
  • Português
  • Português do Brasil
  • Suomi
  • Log In
    New user? Click here to register. Have you forgotten your password?
Home
  • Browse Our Collections
  • Publications
  • Researchers
  • Research Data
  • Institutions
  • Statistics
    • English
    • ÄŒeÅ¡tina
    • Deutsch
    • Español
    • Français
    • Gàidhlig
    • LatvieÅ¡u
    • Magyar
    • Nederlands
    • Português
    • Português do Brasil
    • Suomi
    • Log In
      New user? Click here to register. Have you forgotten your password?
  1. Home
  2. Resources
  3. UniMAP Index Publications
  4. Publications 2022
  5. Effect of sulphur vulcanization system on physical, morphological and thermal properties of natural rubber latex foam
 
Options

Effect of sulphur vulcanization system on physical, morphological and thermal properties of natural rubber latex foam

Journal
AIP Conference Proceedings
ISSN
0094243X
Date Issued
2022-05-18
Author(s)
Mohammad Syahrin Smail
Zunaida Zakaria
Universiti Malaysia Perlis
Hakimah Osman
Universiti Malaysia Perlis
Syarifah Nuraqmar Syed Mahamud
Universiti Malaysia Perlis
Munusamy Y.
DOI
10.1063/5.0090694
Abstract
Recently, several research studies have been implemented using sodium bicarbonate (NaHCO3) as a blowing agent on rubber foams, yet none has been found in natural rubber latex foam (NRLF). The use of NaHCO3 as a blowing agent in NRLF prepared by the Dunlop process can potentially develop greener foaming processes and more environmentally friendly foam in the industry of latex foam. This novel method is designed to manage the reduction of harmful waste disposal associated typically in producing the NRLF product which is useful for industry purposes. Hence, this research is presented to investigate the physical properties of NRLF such as relative foam density, crosslink density, average cell diameter, and thermogravimetric analysis (TGA) based on the influences of different sulphur vulcanization systems via conventional vulcanization (CV) system and efficient vulcanization (EV) system. The relative density and crosslink density were increased with an increase in NaHCO3 concentration with the CV system exhibiting higher value than the EV system. For average cell diameter, the results showed a decrease in both systems with the EV system having higher value than the CV system. Thermal stability from the TGA results was also improved at higher NaHCO3 concentration and for the use of the CV system as a foaming approach, the CV system has higher thermal stability than the EV system.
File(s)
research repository notification.pdf (4.4 MB)
Views
1
Acquisition Date
Nov 19, 2024
View Details
google-scholar
Downloads
  • About Us
  • Contact Us
  • Policies