The electrochemical corrosion studies of Nickel/Copper (Ni/Cu) compositionally modulated multilayer nanolayer (CMM) in 3.5 wt% of Sodium Chloride (NaCl) solution at room temperature were investigated using potentiodynamic polarization (PDP) method. A multi-nanolayer of Ni/Cu with the total thicknesses of 3 μm was successfully produced on Cu substrate via electrodeposition process through dual bath technique (DBT). The electrodeposition with 3 different sublayer thicknesses (40 nm, 80 nm and 100 nm) was produced by varying the deposition time. The results of electrochemical experiment indicate that Ni/Cu multi-nanolayer coating have superior corrosion resistance in 3.5 wt % of NaCl solution than the uncoated Cu substrate. The corrosion resistance is increased when the sublayer thicknesses decrease. The morphological analysis of Ni/Cumulti-nanolayer after corrosion testing was examined. The results shows that the uncoated Cu substrate corrode faster if compared to that of Cu substrate coated with Ni/Cu multi-nanolayer coating