Options
Zarimawaty Zailan
Preferred name
Zarimawaty Zailan
Official Name
Zarimawaty, Zailan
Alternative Name
Zailan, Z.
Zailan, Zarimawaty
Main Affiliation
Scopus Author ID
55603553500
Researcher ID
EHB-9502-2022
Now showing
1 - 3 of 3
-
PublicationSelf-switching diodes as RF rectifiers: Evaluation methods and current progress( 2019-06-01)
;Zakaria N. ;Isa M. ;Arshad M.In the advancement of the Internet of Things (IoT) applications, widespread uses and applications of devices require higher frequency connectivity to be explored and exploited. Furthermore, the size, weight, power and cost demands for the IoT ecosystems also creates a new paradigm for the hardware where improved power efficiency and efficient wireless transmission needed to be investigated and made feasible. As such, functional microwave detectors to detect and rectify the signals transmitted in higher frequency regions are crucial. This paper reviewed the practicability of self switching diodes as Radio Frequency (RF) rectifiers. The existing methods used in the evaluation of the rectification performance and cut-off frequency are reviewed, and current achievements are then concluded. The works reviewed in this paper highlights the functionality of SSD as a RF rectifier with design simplicity, which may offer cheaper alternatives in current high frequency rectifying devices for application in low-power devices. -
PublicationEffect of channel length to the frequency response of Si-based Self-Switching Diodes using two-dimensional simulation( 2020-12-18)
;Idris N.B. ;Rosli K.A. ;Zakaria N.F.A planar nanodevice, known as the self-switching diode (SSD) which can be exploited as a high-speed rectifier in a wide range of applications. The non-linearity in the I-V characteristic of the SSD structure has been aimed for rectification application at GHz frequencies is reported. In this work simulation has been conducted on Si-based SSD structure with 230 nm L-shaped channels using ATLAS device simulator under the channel length range of 0.5 μm to 1.3 μm. Furthermore, the validity of the cut-off frequency has also been described using a theoretical value of f t at zero bias. The results showed that the optimization in the channel length of the SSD can assist the high cut-off frequency of SSD rectifying behavior to efficiently operate as microwave rectifier. -
PublicationEffect of channel length to the frequency response of Si-based Self-Switching Diodes using two-dimensional simulation( 2020-12-18)
;Nurul Bariah IdrisA planar nanodevice, known as the self-switching diode (SSD) which can be exploited as a high-speed rectifier in a wide range of applications. The non-linearity in the I-V characteristic of the SSD structure has been aimed for rectification application at GHz frequencies is reported. In this work simulation has been conducted on Si-based SSD structure with 230 nm L-shaped channels using ATLAS device simulator under the channel length range of 0.5 μm to 1.3 μm. Furthermore, the validity of the cut-off frequency has also been described using a theoretical value of f t at zero bias. The results showed that the optimization in the channel length of the SSD can assist the high cut-off frequency of SSD rectifying behavior to efficiently operate as microwave rectifier.7 2