Now showing 1 - 5 of 5
Thumbnail Image
Publication

Advancement in recycling waste tire activated carbon to potential adsorbents

2022-12-01 , Umi Fazara Md Ali , Hussin F. , Subash Chandra Bose Gopinath , Aroua M.K. , Khamidun M.H. , Jusoh N. , Naimah Ibrahim , Ahmad S.F.K.

Waste tires have been identified as one of the contributors to environmental problems and the issue of inadequate landfill spaces. The lack of consistent and systematic approaches such as specific regulations/laws or mechanisms of waste management to waste tires, limited application of technology for recycling waste tires and lack of awareness on the impacts of waste tires problem, make waste tires a source of environmental pollution. Various researches have been conducted on recycling waste tires into polymer bends, and materials to harden concretes, fuels and adsorbent. Researchers suggested that pyrolysis is the current trend of recycling waste tire to harvest the saleable pyrolysis oil and the recycled carbon black. Therefore, this review attempts to compile relevant knowledge about the potential of adsorbent derived from waste tires to be applied in the removal of various types of pollutants like heavy metals, organic pollutants, dye and air/gaseous pollutant. Studies were carried out on revealing the properties and the characteristics of activated carbon derived from waste tire as effective adsorbent which influence the application performance at liquid or gas phase. In addition, the challenges in the production of activated carbon derived from waste tire were discussed.

Thumbnail Image
Publication

Surface alkali promotion of carbon dioxide hydrogenation for conservation of carbon sources: Cyclic voltammetry study

2020-01-01 , Tan S.Y. , Naimah Ibrahim , Umi Fazara Md Ali , Sara Yasina Yusuf , Aroua M.K.

Conversion of CO2 captured from biogas upgrading process into useful chemicals or fuels e.g. methane is an attractive route towards conservation of carbon sources. Sustainable hydrogenation route could be achieved by combining the process with hydrogen generated from water electrolysis. In this work, cyclic voltammetry was used as preliminary technique to probe the electrochemical behaviour of Na-modified Pt/YSZ as model catalyst under CO2 hydrogenation. The reaction is irreversible and the voltammogram features are not easily distinguishable under reaction conditions. The increase in cathodic peak height and the decrease in peak potential with addition of sodium at low coverage (0.32%) indicated that the charge transfer reaction was enhanced and thus the methanation reaction could be electrochemically promoted given sufficient amount of H2 flow. However, increasing Na coverage was found to decrease the current hysteresis possibly due to formation of sodium compounds such as carbonates or oxides that populate the three-phase-boundary (tpb) active sites, thus deactivating the catalyst.

Thumbnail Image
Publication

Adsorption of carbon dioxide (CO2) by activated carbon derived from waste coffee grounds

2021-05-24 , Lim H.K. , Umi Fazara Md Ali , Razi Ahmad , Aroua M.K.

Currently, three are several agricultural bio-based materials have been successfully utilized as gas adsorbents. In this study, waste coffee grounds (WCGs) have been selected as a potential precursor of Carbon Dioxide (CO2) adsorbents. The preparation parameters for activated carbon derived from WCGs were optimized using Response Surface Methodology (RSM). The optimized preparation parameters were found to be 1:3.67 impregnation ratio of acid, 533oC of carbonization temperature and 1.13 hours of activation time, which resulted in 23.6 wt% of yield. The physical and chemical characteristics of WCGAC in terms of surface morphology, carbon content, ash content and yield were also investigated. The CO2 breakthrough time using WCGAC were carried out at the temperatures of 30, 40, and 60°C. It was found that WCGAC shows a longer CO2 breakthrough times (5 mins) and a higher adsorption capacity (4.33 mg CO2/g adsorbent) at 30oC.

Thumbnail Image
Publication

Advancement in recycling waste tire activated carbon to potential adsorbents

2022-12-01 , Umi Fazara Md Ali , Hussin F. , Subash Chandra Bose Gopinath , Aroua M.K. , Khamidun M.H. , Jusoh N. , Naimah Ibrahim , Syahirah Faraheen Kabir Ahmad

Waste tires have been identified as one of the contributors to environmental problems and the issue of inadequate landfill spaces. The lack of consistent and systematic approaches such as specific regulations/laws or mechanisms of waste management to waste tires, limited application of technology for recycling waste tires and lack of awareness on the impacts of waste tires problem, make waste tires a source of environmental pollution. Various researches have been conducted on recycling waste tires into polymer bends, and materials to harden concretes, fuels and adsorbent. Researchers suggested that pyrolysis is the current trend of recycling waste tire to harvest the saleable pyrolysis oil and the recycled carbon black. Therefore, this review attempts to compile relevant knowledge about the potential of adsorbent derived from waste tires to be applied in the removal of various types of pollutants like heavy metals, organic pollutants, dye and air/gaseous pollutant. Studies were carried out on revealing the properties and the characteristics of activated carbon derived from waste tire as effective adsorbent which influence the application performance at liquid or gas phase. In addition, the challenges in the production of activated carbon derived from waste tire were discussed.

Thumbnail Image
Publication

Bio-removal of lead (II) ions under optimal condition by zinc chloride-impregnated activated carbon from brown alga

2024-01-01 , Osman N.S. , Umi Fazara Md Ali , Subash Chandra Bose Gopinath , Hussin F. , Aroua M.K.

Sargassum sp., a brown alga in the division of macroalgae was evaluated for its ability to synthesis macroalgal-based activated carbon and remove lead (II) ions from synthetic aqueous solution. The sargassum activated carbon (SAC) was prepared by chemical activation impregnated with zinc chloride followed by carbonization. The surface morphology and functional group of untreated Sargassum sp. powder (SAP) and activated Sargassum sp. carbon (SAC) were scanned and presented with the Scanning Electron Microscope (SEM) and Fourier Transform Infrared spectroscopy (FTIR). Batch studies were conducted to explore maximum removal efficiency in term of pH, initial lead (II) ions concentration, contact time, adsorbent dosage, and temperature for the efficient adsorption. The maximum lead (II) ions uptake capacity for SAC was obtained at pH 5, initial lead (II) ions concentration at 25 mg/L, operation time of 60 min, adsorbent dosage of 0.1 g and temperature of 40 °C. The adsorption data were well-fitted by the Freundlich isotherm model, with an R2 value of 1.000, indicating a good fit. The kinetic study revealed that the adsorption of lead (II) ions followed a pseudo-first-order kinetic model, with an R2 value of 0.9746. This study validates the use of brown algae in the treatment of heavy metal contamination in wastewater.