Now showing 1 - 2 of 2
  • Publication
    A hybrid multi-objective Evolutionary Programming-Firefly Algorithm for different type of Distributed Generation in distribution system
    ( 2022-12-01)
    Noor Najwa Husnaini Mohammad Husni
    ;
    ; ;
    Hussain M.H.
    ;
    Musirin I.
    ;
    With the rise in electricity demand, various additional sources of generation, known as Distributed Generation (DG), have been introduced to boost the performance of power systems. A hybrid multi-objective Evolutionary Programming-Firefly Algorithm (MOEPFA) technique is presented in this study for solving multi-objective power system problems which are minimizing total active and reactive power losses and improving voltage profile while considering the cost of energy losses. This MOEPFA is developed by embedding Firefly Algorithm (FA) features into the conventional EP method. The analysis in this study considered DG with 4 different scenarios. Scenario 1 is the base case or without DG, scenario 2 is for DG with injected active power, scenario 3 is for DG injected with reactive power only and scenario 4 is for DG injected with both active and reactive power. The IEEE 69-bus test system is applied to validate the suggested technique.
  • Publication
    Assessment of Control Drive Technologies for Induction Motor: Industrial Application to Electric Vehicle
    Nowadays electric vehicle has increasingly gained much popularity indicated by growing global share market targeted at 30% by 2030 after recording 7.2million global stock in 2019. Compared to Internal Combustion Engine (ICE) counterpart, Battery Electric Vehicles (BEV) produce zero tailpipe emission which greatly reducing carbon footprints. Induction motor has been widely used and its control technology has evolved from scalar type volt/hertz to recent predictive control technology. This allows induction motor's application to expand from being the workhorse of industry to become prime mover in electric vehicle, where high performance is expected. Among vector control scheme, Direct Torque Control (DTC) has gained interest over Field Oriented Control (FOC) with simpler structure, better robustness and dynamics performance yet suffer from high torque and flux ripple. In electric vehicle applications, high ripple at low speed is highly undesirable, potentially causing torsional vibration. High performance control requires speed sensor integration, which often increase complexity in the design. The work aims to review the best control technology for induction motor in electric vehicle application through performance parameter evaluation such as improvement on dynamic response, torque and flux ripple reduction, and component optimization. Several arise issues in motor control and possible methods to circumvent are highlighted in this work. In conclusion, model predictive torque control (MPTC) is the most promising scheme for electric vehicle with excellent dynamic response, good low speed performance, and 50% torque ripple reduction compared to conventional DTC and potential integration with sliding mode observer for sensorless solution.