Now showing 1 - 10 of 32
Thumbnail Image
Publication

Biotreatment of sulfonated dyestuffs with energy recovery in microbial fuel cell: Influencing parameters, kinetics, degradation pathways, mechanisms, and phytotoxicity assessment

2021-08-01 , Tan S.M. , Ong Soon An , Ho Li Ngee , Wong Y.S. , Che Zulzikrami Azner Abidin , Thung W.E. , Teoh T.P.

Removal of recalcitrant sulfonated dyestuff intermediates from wastewater has been an urgent challenge for environmental technologies. In this regard, the biodegradations of monoazo Methyl Orange (MO) and diazo dyes Reactive Black 5 (RB5) towards wastewater treatment and bioelectricity generation in microbial fuel cell were investigated and compared through the studies on azo dye concentration, aeration, sampling points arrays, and electrode spacings. The degradation of diazo RB5 yielded higher chemical oxygen demand removal, decolourization efficiencies, and power generation over monoazo MO. The decolourization efficiency of RB5 (97.62%) increased with an increase of RB5 concentration (50 mg/L), suggesting that the system has the capability of removing higher RB5 concentration. However, contrary results were obtained with MO due to its toxicity. This study also demonstrated that the decolourization rate of diazo RB5 (0.1533 h-1) was ≈ 53% higher than monoazo MO (0.0727 h-1). The findings revealed that the degradation kinetic was remarkably influenced by the chemical structure of dye, where dye with more electron-withdrawing groups at para position are more susceptible to be reduced. Higher output voltage (568.59 mV) and power generation (108.87 mW/m2) were attained with RB5 due to electron donor availability and electron-shuttling characteristics of RB5 decolourized intermediates. Furthermore, detailed degradation pathways of MO and RB5 were presented based on the UV-vis and GC-MS results. The phytotoxicity assessment via Sorghum bicolor seeds had further verified the reduction in toxicity after the treatment of azo dyes.

Thumbnail Image
Publication

Hydrogen sulfide removal from fermentative biohydrogen process: Effect of ZSM-5 zeolite loading

2024-03-01 , Asman M.K.A. , Nabilah Aminah Lutpi , Wong Y.S. , Hanif M.A. , Ong Soon An , Farrah Aini Dahalan , Nur Izzati Iberahim , Hamdzah M.

The production and consumption of biohydrogen is growing because it is a “green,” renewable energy that can be obtained in a relatively cost-effective manner through anaerobic digestion. Biohydrogen produced from biomass is a viable source of renewable energy; nevertheless, the presence of highly toxic and corrosive hydrogen sulfide (H2S) in the process can hinder the quality of biohydrogen production and limit its application in energy conversion equipment. Consequently, the goal of the research was to assess the feasibility of using ZSM-5 zeolite for H2S adsorption that function as activating agent to enhance biohydrogen quality under thermophilic conditions. The effect of ZMS-5 Zeolite loading (0.2–1.0 g) on biohydrogen production via dark fermentation from mixed fruit waste (MFW) was investigated using anaerobic sludge from a sewage treatment plant. The pH of the broth mixture was adjusted to 6.0, anaerobic conditions were created by purging it with nitrogen gas, and the temperature of the fermentative biohydrogen process was maintained at 60°C. Meanwhile, the H2S adsorption test was run at ambient temperature with flow rates (100 ml/min) and an H2S inlet concentration of 10000 ppm. The results indicate that the Z + H2S exhibit spectral lines corresponding to the S-H asymmetric stretching vibration of H2S at 2345.97 cm−1. The ideal adsorption capacity is at 0.8 g with yet, increasing the dosage amount of adsorbents, increases the time required for the adsorbent to achieve 90% saturation. The non-linear curve fitting demonstrated that the adsorption kinetics of all dosages used followed those of the Avrami kinetic model. This approach of using ZSM-5 zeolite for H2S removal provides an advantage in terms of minimizing environmental pollution and having great potential uses in industrial processes.

Thumbnail Image
Publication

Hydroxyl radical formation in the hybrid system of photocatalytic fuel cell and peroxi-coagulation process affected by iron plate and UV light

2020-04-01 , Nordin N. , Ho Li Ngee , Ong Soon An , Ibrahim A.H. , Abdul Latif Abdul Rani , Lee S.L. , Ong Y.P.

The hybrid electrochemical system of photocatalytic fuel cell - peroxi-coagulation (PFC-PC) is a combined technology of advanced oxidation process (AOP) which involve the hydroxyl radical formation for simultaneous degradation of organic pollutant and electricity generation. The p-nitrosodimethylaniline (RNO) spin trapping technique was applied by analyzing the RNO bleaching performance to detect the OH[rad] at the PFC and PC reactors. The presence of UV light showed higher RNO bleaching rate at the PFC reactor (11.7%) with maximum power density (Pmax = 3.14 mW cm−2). Results revealed that the optimum of maximum power density was observed at iron plate size of 30 cm2. UV light became a limiting factor in the PFC system as a power source in the PFC-PC system. Meanwhile, iron plate plays an important role to supply the soluble Fe2+ ions by oxidation process and become a suitable catalyst for in-situ production of H2O2 and OH[rad] through the PC process to degrade the organic molecules.

Thumbnail Image
Publication

Discerning the biodegradation of binary dyes in microbial fuel cell: Interactive effects of dyes, electron transport behaviour, autocatalytic mechanism, and degradation pathways

2022-06-01 , Tan S.M. , Ong Soon An , Ho Li Ngee , Wong Y.S. , Che Zulzikrami Azner Abidin , Teoh T.P. , Yap K.L.

This research presented the first attempt to investigate the effect of biodegradation of binary Acid Orange 7 (AO7) and Reactive Green 19 (RG19) on the performances of wastewater treatment and bioelectricity generation, using anti-gravity flow microbial fuel cell (AGF-MFC) system. The influences of initial dye concentration, substrate loading, sulphate concentration and application of quinones on system performances were comprehensively evaluated. The decolourization efficiencies of AO7 were higher than RG19 in binary solutions, at every tested concentrations. The addition of higher concentration of RG19 in binary solution was also found to have increased the overall performances of MFC, owing to electron mediating characteristics of its decolourized intermediates. However, the power density declined with the addition in dye concentration. Further increase of substrate loading by 3-folds (2.43 g/L) improved the decolourization efficiency approximately by 7%, but deteriorated power performance by 42%, to 63.40 ± 0.07 mW/m2. Increasing sulphate concentration from 20 to 400 mg/L had resulted in a high decolourization extent of binary dyes ascribed to sulphide-mediated dye degradation, whereas the power generation was reduced. The increase of sulphate to 800 mg/L led to decrease in decolourization and power density of the system. These outcomes deciphered the competitions of electrons between different electron acceptors in the anodic compartment. Moreover, the autocatalytic mechanism of RG19 decolourized intermediates, 1-amino-2-naphthol-3,6-disulphonate (1A2N36S) as electronophore was thoroughly unearthed. Detailed degradation pathways of dyes were proposed based on UV-Visible spectra and gas chromatograph-mass spectrometer (GC-MS) analyses.

Thumbnail Image
Publication

Influence of Amaranth dye concentration on the efficiency of hybrid system of photocatalytic fuel cell and Fenton process

2017-10-01 , Noradiba Nordin , Ho Li Ngee , Ong Soon An , Abdul Haqi Ibrahim , Wong Yee Shian , Sin Li Lee , Oon Yoong Sin , Oon Yoong Ling

A novel sustainable hybrid system of photocatalytic fuel cell (PFC) and Fenton process is an alternative wastewater treatment technology for energy-saving and efficient treatment of organic pollutants. The electrons generated from PFC photoanode are used to produce H2O2 in the Fenton reactor and react with the in situ generation of Fe2+ from sacrificial iron for hydroxyl radical formation. In this study, the effect of different initial Amaranth dye concentrations on degradation and electricity generation were investigated. ZnO/Zn photoanode was prepared by anodizing method and characterized by X-ray diffraction (XRD) and scanning electron microscope (SEM). Results revealed that the maximum power density (9.53 mW/m2) and current density (0.0178 mA/m2) were achieved at 10 mg/L of Amaranth. The correlation between dye degradation, voltage output, and kinetic photocatalytic degradation were also investigated and discussed.

Thumbnail Image
Publication

Polypropylene biofilm carrier and fabricated stainless steel mesh supporting activated carbon: Integrated configuration for performances enhancement of microbial fuel cell

2021-08-01 , Tan S.M. , Ong Soon An , Ho Li Ngee , Wong Y.S. , Che Zulzikrami Azner Abidin , Thung W.E. , Teoh T.P.

The mass transfer resistance at the anode and the reduction of oxygen at the cathode are currently perceived as two major bottlenecks of microbial fuel cells. To overcome these issues, an integrated configuration was developed for performances enhancement on simultaneous bioelectricity generation and wastewater treatment in single chamber up-flow membrane-less microbial fuel cell (UFML-MFC). Polypropylene biofilm carriers were used as anodic packing materials and fabricated stainless steel mesh holder supporting activated carbon flakes (CF/SM) was employed as biocathode configuration in this study. The employments of polypropylene carriers and CF/SM enhanced not only the active surface area and microbial adhesion, but also the mass transfer of MFC system. The maximum output voltage, power and current generation achieved in this system were 615 mV, 162.59 mW/m2 and 468.74 mA/m2, respectively. In terms of wastewater treatment performance, UFML-MFC achieved 85.6% and 95.7% of COD and NH4+ removal, respectively. The COD reduction in closed circuit was 9.87% better than open circuit due to stimulation of electrochemical-active bacteria for electron transfer to the anode, which favoured organic matter degradation. The enrichment of electrogenic bacteria at A3, which was largest electrode spacing (23 cm) in the system resulted a higher voltage and power output compared to A1 (11 cm) and A2 (17 cm). Besides, the energy performances of this MFC system were also evaluated based on NERs (1.074 kWh/kg COD), NERv (22.86 Wh/m3) and CE (10.42%).

Thumbnail Image
Publication

Comparative study of dihydroxybenzene isomers degradation and bioelectricity generation using CuO as cathodic catalyst in double chambered microbial fuel cell

2022-10-01 , Yap K.L. , Ho Li Ngee , Ong Soon An , Guo K. , Liew Y.M. , Thor S.H. , Tan S.M. , Teoh T.P.

A double chambered microbial fuel cell (MFC) showed enormous capacity in the simultaneous degradation of synthetic wastewater and dihydroxybenzene isomers (catechol, resorcinol and hydroquinone) and concurrently with bioelectricity generation. Operating parameter such as effect of catalyst on MFC system was evaluated using bare carbon plate and copper (II) oxide (CuO) loaded carbon plate as cathodes, respectively, in terms of chemical oxygen demand (COD) and dihydroxybenzene isomers removal efficiency, maximum voltage output and power density. Results revealed that the application of CuO loaded carbon plate was more effective in the COD removal of synthetic wastewater in the anodic chamber and degradation of dihydroxybenzene isomers in the cathodic chamber. Compared with the bare carbon plate as cathode, the COD removal efficiency of synthetic wastewater, removal rate of dihydroxybenzene isomers and maximum voltage output increased 20, 100 and 31 %, respectively, when CuO was applied as cathodic catalyst. Among the dihydroxybenzene isomers, hydroquinone exhibited the best performance in both absence and presence of catalyst in the MFC. The position of the substituent of hydroxyl groups possessed significant effect on the reaction rate, reactivity and conductivity of dihydroxybenzene isomers. Hydroquinone was more susceptible to be degraded than that of catechol and resorcinol due to its lower dipole moment which eased the bond cleavage. The intermediate products of degradation of catechol, resorcinol and hydroquinone were determined using gas chromatograph-mass spectrometer and the degradation pathways were proposed.

Thumbnail Image
Publication

Intermolecular degradation of aromatic compound and its derivatives via combined sequential and hybridized process

2023-03-01 , Lau Y.Y. , Wong Yee Shian , Ong Soon An , Nabilah Aminah Lutpi , Sam Sung Ting , Teng T.T. , Eng K.M.

The under-treated wastewater, especially remaining carcinogenic aromatic compounds in wastewater discharge has been expansively reported, wherein the efficiency of conventional wastewater treatment is identified as the primary contributor source. Herein, the advancement of wastewater treatments has drawn much attention in recent years. In the current study, combined sequential and hybridized treatment of thermolysis and coagulation–flocculation provides a novel advancement for environmental emerging pollutant (EP) prescription. This research is mainly demonstrating the mitigation efficiency and degradation pathway of pararosaniline (PRA) hybridized and combined sequential wastewater treatment. Notably, PRA degradation dominantly via a linkage of reaction: thermal cleavage, deamination, silication and diazene reduction. Thermolysis acts as an initiator for the PRA decomposition through thermally induced bond dissociation energy (BDE) for molecular fragmentation whilst coagulation–flocculation facilitates the formation of organo-bridged silsesquioxane as the final degradation product. Different from conventional treatment, the hybridized treatment showed excellent synergistic degradability by removing 99% PRA and its EPs, followed by combined sequential treatment method with 86% reduction. Comprehensive degradation pathway breakdown of carcinogenic and hardly degradable aromatic compounds provides a new insight for wastewater treatment whereby aniline and benzene are entirely undetectable in effluent. The degradation intermediates, reaction derivatives and end products were affirmed by gas chromatography–mass spectrometry, Fourier transform infrared spectroscopy and ultraviolet–visible spectrophotometry (GC–MS, FTIR and UV–Vis). This finding provides valuable guidance in establishing efficient integrated multiple-step wastewater treatments. Graphical abstract: [Figure not available: see fulltext.].

Thumbnail Image
Publication

Transformation from biofiltration unit to hybrid constructed wetland-microbial fuel cell: Improvement of wastewater treatment performance and energy recovery

2023-05-01 , Teoh T.P. , Koo C.J. , Ho Li Ngee , Wong Yee Shian , Nabilah Aminah Lutpi , Tan S.M. , Yap K.L. , Ong Soon An

This study aimed to compare the performance of biofiltration, constructed wetland, and constructed wetland microbial fuel cell (CW-MFC). The transformation from a biofiltration unit to a hybrid CW-MFC was demonstrated with the advantages of improvement of wastewater treatment while generating electricity simultaneously. The introduction of plants to the upper region of the bioreactor enhanced the DO level by 0.8 mg/L, ammonium removal by 5 %, and COD removal by 1 %. The integration of electrodes and external circuits stimulated the degradation rate of organic matter in the anodic region (1 % without aeration and 3 % with aeration) and produced 5.13 mW/m3 of maximum power density. Artificial aeration improved the nitrification efficiency by 38 % and further removed the residual COD to an efficiency of 99 %. The maximum power density was also increased by 3.2 times (16.71 mW/m3) with the aid of aeration. In treating higher organic loading wastewater (3M), the maximum power density showed a significant increment to 78.01 mW/m3 (4.6-fold) and the COD removal efficiency was 98 %. The ohmic overpotential dominated the proportion of total loss (67-91 %), which could be ascribed to the low ionic conductivity. The reduction in activation and concentration loss contributed to the lower internal resistance with the additional aeration and higher organic loading. Overall, the transformation from biofiltration to a hybrid CW-MFC system is worthwhile since the systems quite resemble while CW-MFC could improve the wastewater treatment as well as recover energy from the treated wastewater.

Thumbnail Image
Publication

Crucial roles of aeration and catalyst on caffeine removal and bioelectricity generation in a double chambered microbial fuel cell integrated electrocatalytic process

2021-02-01 , Yap K.L. , Ho Li Ngee , Ong Soon An , Guo K. , Oon Y.S. , Ong Y.P. , Thor S.H.

The effects of aeration and catalyst on caffeine removal in the cathodic chamber and electricity generation of a double chambered microbial fuel cell (MFC) integrated electrocatalytic process were investigated. The overall performances of MFC in caffeine removal and electricity generation were significantly enhanced under the presence of copper (II) oxide (CuO) and aeration. CuO was synthesized using a hydrothermal method and was immobilized on the carbon plate for application as cathode. The CuO particles and CuO loaded carbon plate (CuO/C) were characterized by using X-ray diffractometer and scanning electron microscopy equipped with energy-dispersive X-ray spectroscopy. The effective transfer of electrons from anodic chamber to cathodic chamber for oxygen reduction reaction (ORR) accelerated the removal of caffeine using CuO/C cathode under aerated condition. Results revealed that 15-fold higher removal efficiency of caffeine was obtained using CuO/C cathode (52.16 %) as compared with that of bare carbon plate (bare C) (3.41 %) at the first 24 h under aerated condition. The highest maximum power density and current density (28.75 mW m-2 and 253.33 mA m-2) were obtained for CuO/C cathode under aerated condition. Bare C cathode possessed the lowest maximum power density and current density (9.75 mW m-2 and 106.67 mA m-2) under unaerated condition. The circuit connection greatly improved the chemical oxygen demand removal of synthetic wastewater in the anodic chamber when the cathodic chamber was under aerated condition. The detailed mechanisms of the effects of CuO catalyst and aeration on the ORR at cathodic chamber were discussed.