Options
Ng Qi Hwa
Preferred name
Ng Qi Hwa
Official Name
Ng, Qi Hwa
Alternative Name
Ng, Q. H.
Qi, Hwa Ng
Ng, Qi H.
Main Affiliation
Scopus Author ID
54413018300
Researcher ID
A-9192-2019
Now showing
1 - 2 of 2
-
PublicationFacile synthesis of magnetophoretic augmented adsorbent for water remediation( 2024-03)
;Chuan Chuan Lim ;Siew Hoong ShuitSigit Tri WicaksonoIn this new era of globalization, magnetic adsorbents have gained vast attention from researchers in wastewater treatment applications. In this study, sulphonated magnetic multi-walled carbon nanotubes (S-MMWCNTs) were used to remove methylene blue (MB) from an aqueous solution. The S-MMWCNTs are characterized by various analytical methods to investigate their adsorbent features. Adsorption behaviours of the as-prepared composites affected by solution pH and contact time were systematically studied and discussed. The adsorption kinetic data fit the pseudo-second-order kinetic model well. Moreover, the MB removal efficiency of S-MMWCNTs only drops slightly (~6.5%) after five consecutive adsorption cycles, showing their good stability and recyclability. -
PublicationRemoval of methylene blue using trifunctional magnetic polyethersulfone microcapsule: process parameters and optimization study( 2025-01)
;Suh Cia Yong ;Siew Hoong Shuit ;Wei Yang Tan ;Steven Lim ;Hui San Thiam ;Shiau Foon Tee ;Kok Chung ChongWater pollution from dye-contaminated effluents poses a critical environmental threat. Current dye removal methods often rely on activated carbon, which is expensive and challenging to recover. This study focuses on the removal of methylene blue (MB), a cationic dye, using trifunctional polyethersulfone (PES)-encapsulated polydimethyldiallyl ammonium chloride-functionalized iron oxide (PDDA-Fe3O4) microcapsules with adsorptive, catalytic, and magnetic properties. The negatively charged PES facilitates MB adsorption through electrostatic interactions, while Fe3O4 enhances Fenton degradation and imparts magnetic responsiveness. Characterization techniques, including Fourier transform infrared spectroscopy and scanning electron microscopy with energy-dispersive X-ray analysis, confirmed the presence of PDDA-coated Fe3O4 and the formation of porous structures and finger-like cavities in the microcapsules. Process parameters such as microcapsule loading (10-30 g/L), MB concentration (10-50 ppm), pH (2-10), contact time (60-240 min), and H2O2 concentration (0.1-1 mol/L) were optimized using response surface methodology with a central composite design. Optimal conditions for MB removal (92.94%) were achieved with 21 g/L of microcapsules, 25 ppm of MB, pH 7, 127 minutes of contact time, and 0.45 mol/L of H2O2. These results demonstrate the efficacy of PDDA-Fe3O4@PES microcapsules for dye removal and suggest their potential for application in industries such as textiles and cosmetics, which generate high volumes of dye-contaminated wastewater.