Now showing 1 - 3 of 3
No Thumbnail Available
Publication

Reclamation and Reutilization of Incinerator Ash in Artificial Lightweight Aggregate

2022-01-01 , Norlia Mohamad Ibrahim , Roshazita Che Amat , Mustaqqim Abdul Rahim , Nur Liza Rahim , Abdul Rahim Abdul Razak

This study focused on the reclamation of ash from incineration process and development of new artificial lightweight aggregate (LWA) that have comparable properties with existing natural coarse aggregate. The main objective of this study is to examine potential use of recycled municipal solid waste incineration (MSWI) ash as raw material in LWA production with a method of cold-bonded pelletization. Two types of incineration ash which is bottom ash (BA) and fly ash (FA) were collected from Cameron Highland Incineration Plant, Malaysia. The properties of BA and FA are studied by means of X-Ray Fluorescence (XRF) and microstructure of these ashes were inspected using Scanning Electron Microscope (SEM). The properties of BALA and FALA produced in this study is examined including loose bulk density, water absorption and aggregate impact value (AIV). From the results of both types of artificial LWA, the lowest loose bulk density of BALA is BALA50 with 564.14 kg/m3and highest is at 831.19 kg/m3. For FALA50, lowest loose bulk density is 573.64 kg/m3and highest is 703.35 kg/m3. Water absorption of BALA and FALA is quite similar with one another in with the value of 23.8% and 22.6%, respectively. Generally, FALA have better qualities of LWA comparing with BALA with lower bulk density and water absorption and can be categorized as strong aggregate. In summary, reclamation and reutilization of incinerator ash has generated acceptable qualities for artificial LWA. Both types of BA and FA shown a great potential to be recycled as additional materials in artificial aggregate production.

No Thumbnail Available
Publication

Workability and density of concrete containing Coconut Fiber

2022-01-01 , Norlia Mohamad Ibrahim , Nur Liza Rahim , Roshazita Che Amat , Mustaqqim Abdul Rahim , Woo Chin Kah , Irnis Azura Zakaria , Moncea Andreea

Use of natural fiber in concrete to enhance the strength of concrete have been used widely and become as part of an alternative building materials. For instance, the use of coconut fiber (CF) which are non-hazardous, environmental-friendly and can improves the engineering properties of concrete. The aim of this study is to identify the workability and density of CF modified concrete. CF were added into the mixture in 3 different amount that is 200 g, 400 g, and 600 g. The size of the cube samples is 100 × 100 × 100 mm and were cured for 14 days, and 28 days. To evaluate the effect of CF in improving the properties of concrete, the properties of ordinary concrete are used as a reference which consist 0% CF. The fresh and hardened densities for all samples also show that when more fiber was added into mixture, densities reduced. As summary, the study shows that by adding CF in concrete reduced the workability and density of concrete.

No Thumbnail Available
Publication

Investigating the effect of steel wire and carbon black from worn out tyre on the strength of concrete

2024-10 , Norlia Mohamad Ibrahim , Ali Naqiuddin Zamah Shari , Nur Zakiah Anis Abdul Rahim , Nur Liza Rahim , Mustaqqim Abdul Rahim , Roshazita Che Amat , Norshah Aizat Shuaib , György Deak

Technology in concrete is rapidly developing to improve the quality and properties of concrete. One of the many recycled materials is worn-out tyres. Currently, the use of tires is very widespread considering the use of vehicles that increase from time to time. Piles of discarded tires can cause a lot of damage to the environment. So, by using steel wire waste (SWW) as new fiber reinforcement in concrete and with the combination with carbon black (CB), it is hoped that, by doing this, not only it could improve the quality of concrete, but also preserves the environment. Therefore, the objective of this research was, to identify the properties of fresh concrete with the addition of SWW and CB, and also to investigate the physical and mechanical properties of hardened concrete, incorporating of SWW as additional fiber reinforcement and CB. For fresh concrete, workability using a slump test was conducted. Several tests were carried out on the properties of hardened concrete. Among them were compressive strength, flexural strength, splitting tensile strength, and water absorption. The physical appearance of the concrete has also been examined and recorded. There are four batches of concrete which consist of one control batch and three batches of concrete with various weights of SWW which are in the portion of 300 g, 600 g, and 900 g, and the weight of CB is maintained at 300 g for all batches. For workability, all concrete batches with the addition of SWW and CB show acceptable workability. For the case of the density of fresh concrete, samples containing 900 g addition of SWW have the highest density which was 2520 kg/m³, as expected. Results for water absorption show that the lowest value is contributed by the control sample which was 7.6%. For compressive and flexural strength, 300 g addition of SWW has the highest value which was 28.52 MPa for compressive strength and 7.52 MPa for flexural strength. Lastly, for splitting tensile strength, the highest value was also obtained when 300 g addition of SW was added which was 5.4 MPa. To conclude, SWW and CB can be added to concrete to obtain comparable strength of concrete. However, some modifications could be made to both recycle materials to improve concrete performance.