Now showing 1 - 1 of 1
  • Publication
    Design and Mechanical Analysis on a Compact Bicycle Loader for a Small Cubic Centimeter Motorcycle
    This paper presents the finite element and fluid-flow analysis on the behavior of a new compact bicycle loader design used for a small cubic centimeter motorcycle. The bicycle loader in the current market comes with various sizes and design which mostly applicable to the large-scale vehicles, namely car and motorcycle with higher cubic centimeter engines. The study aims to design a new compact bicycle loader specifically for small cubic centimeter motorcycles with greater loading capability and security. The finite element analysis was performed using the ABAQUS and ANSYS software to better understand the static and dynamic response of the bicycle loader relating to static and fatigue strengths with specific loads. The fluid-flow to structure analysis has also been carried out using the XFlow Computational Fluid Dynamic software to demonstrate the flow behavior and effect on the bicycle loader with different motorcycle speed. The fatigue analysis was carried out to analyze the structural performance of the bicycle loader. Factors like fatigue life, safety factor, biaxiality indication and fatigue response are plotted for the bicycle loader and the fatigue performance is predicted using the data obtained. The results of the stress distribution show that the maximum von-Mises stress obtained from is about 31.7 MPa, well within the yield strength if the mild steel material. The results show that the highest stress distribution occurs at the mounting part of the bicycle loader, with equivalent stress of 50.29 MPa. The results show that there are no permanent deformations occurred in the bicycle loader during the fatigue test and fulfils the minimum safety requirements needed. The fluid flow analysis show that a strong recirculation region occurs at the front of the motorcycle, bicycle headset and suspension fork and downstream of the bicycle tires, however, no obvious flow disturbance is observed in the vicinity of the bicycle loader.
      1