Now showing 1 - 3 of 3
  • Publication
    Feasibility analysis of grid-connected and islanded operation of a solar PV microgrid system: A case study of Iraq
    Iraq has massive potential for electricity generation from solar energy. Because the country currently suffers from daily electricity shortages, a grid-connected PV system is an unsuitable option since the PV cannot serve the load during the electricity blackouts. This paper aims to analyze the techno-economic and environmental feasibility of a solar PV microgrid system which is able to supply the load during both grid availability and outage periods. A household in Baghdad was selected as a case study. HOMER software was used to carry out the overall analysis using five different control strategies. The results indicated that the most economical configuration was achieved by allowing the grid to charge the batteries at all rates, with a net present cost (NPC) of $29,713. A sustainability assessment revealed that preventing the grid from charging the battery resulted in the highest renewable fraction and the lowest CO2 emissions with 64.9% and 4533 kg/year, respectively. Furthermore, inserting a diesel generator to an economically optimized system was found to reduce the NPC by 11.6%, while increasing the CO2 emissions by 32.7%. This study showed that implementing this sort of project can provide clean, economical, and continuous electricity production in countries with daily blackouts.
  • Publication
    A new optimization strategy for wind/diesel/battery hybrid energy system
    ( 2022-01-15)
    Aziz A.S.
    ;
    ;
    Hussain M.K.
    ;
    ; ;
    Ramli M.A.M.
    ;
    Khalil Zidane T.E.
    HOMER software is a powerful tool for modeling and optimization of hybrid energy system (HES). The main two default control strategies in HOMER are load following (LF) and cycle charging (CC) strategies. In these strategies, the decision to use the generator or battery at each time step is made based on the lowest-cost choice. Therefore, these strategies are difficult to be implemented in practice especially in countries with continuous fuel price fluctuations. In this study, a new dispatch strategy based on HOMER-MATLAB Link Controller for an isolated wind/diesel/battery HES is proposed to overcome the limitations of the default HOMER strategies. A detailed technical, economic, and greenhouse gas emission analysis is presented for the system under LF, CC, and the proposed dispatch strategies. Besides offering more realistic optimization, the results show that the proposed strategy offers the best economic and environmental performance with a net present cost of $56473 and annual CO2 emissions of 6838 kg. Furthermore, the sensitivity analysis reveals that the proposed strategy is not affected by the fuel price variation, in opposite to LF, and CC strategies which is affected dramatically by this variation. The findings are of paramount importance towards more realistic and efficient energy management strategies.
  • Publication
    Impacts of albedo and atmospheric conditions on the efficiency of solar energy: a case study in temperate climate of Choman, Iraq
    ( 2021-01-01)
    Aziz A.S.
    ;
    ; ;
    Ramli M.A.M.
    Temperature and solar radiation have large effects on the performance of photovoltaic (PV) systems. PV cell temperature is related to the ambient temperature, while the solar radiation incident on PV surface depends on the slope and azimuth of the PV panels. Furthermore, ground reflectance (albedo) affects the solar radiation incident on the PV surface and hence influences its performance. Nevertheless, the impact of some important factors on the PV performance such as the ground reflectance at different tilt angles and temperature coefficient of power under Middle East (temperate) climatic conditions are scarcely reported. In this research paper, a techno-economic analysis has been done to investigate the impact of temperature, tilt and azimuth angles, and ground reflectance on the performance of solar energy system. HOMER software was used as a tool in this study where Choman, Iraq, was selected as a case study. The results indicate that with a base case (temperature coefficient of − 0.48%/ Â°C, albedo of 20% and ambient temperature of 11 Â°C), facing the PV to south with a tilt angle of 40° or 45° results in the most economical system by having net present cost of $70595 and cost of energy of $0.54/kWh. Furthermore, PV modules with high sensitivity to temperature are found to be an attractive option based on Choman ambient temperature. Meanwhile, increasing the ground reflectance from 10 to 90% results in an increase of the annual optimum tilt angle from 38° to 52° and a decrease of the PV required capacity from 20.8 to 19.4 kW (for temperature coefficient of − 0.48%/ Â°C). The results prove that the studied parameters must be treated well to establish an enabling environment for PV development in Iraq.