Now showing 1 - 4 of 4
  • Publication
    Effective synthesis of silicon carbide nanotubes by microwave heating of blended silicon dioxide and multi-walled carbon nanotube
    Silicon carbide nanotube (SiCNTs) has been proven as a suitable material for wide applications in high power, elevated temperature and harsh environment. For the first time, we reported in this article an effective synthesis of SiCNTs by microwave heating of SiO2 and MWCNTs in molar ratio of 1:1, 1:3, 1:5 and 1:7. Blend of SiO2 and MWCNTs in the molar ratio of 1:3 was proven to be the most suitable for the high yield synthesis of β-SiCNTs as confirmed by X-ray diffraction pattern. Only SiCNTs were observed from the blend of MWCNTs and SiO2 in the molar ratio of 1:3 from field emission scanning electron microscopy imaging. High magnification transmission electron microscopy showed that tubular structure of MWCNT was preserved with the inter-planar spacing of 0.25 nm. Absorption bands of Si-C bond were detected at 803 cm-1 in Fourier transform infrared spectrum. Thermal gravimetric analysis revealed that SiCNTs from ratio of 1:3 showed the lowest weight loss. Thus, our synthetic process indicates high yield conversion of SiO2 and MWCNTs to SiCNTs was achieved for blend of SiO2 and MWCNTs in molar ratio of 1:3.
  • Publication
    Dielectric properties and microwave absorbing properties of silicon carbide nanoparticles and silicon carbide nanowhiskers
    Silicon carbide (SiC) is well known for their outstanding microwave absorbing properties. SiC nanomaterials (SiCNMs) are expected to have better microwave absorption performance due to their high specific surface area. To date, no study was reported to compare the dielectric properties and microwave absorbing properties of different type of SiCNMs. Therefore, the objective of this paper is to compare the dielectric properties and microwave absorption properties of different types of SiCNMs. In this paper, SiC nanoparticles (SiCNPs) and SiC nanowhiskers (SiCNWs) were characterised using SEM and XRD. In addition, their dielectric properties and microwave absorbing properties were measured using network analyser and transmission line theory. It was found that SiCNWs achieved higher dielectric constant and loss factor which are and εr’ =17.94 and εr″ = 2.64 compared to SiCNPs that only achieved εr’ = 2.83 and εr″ = 0.71. For microwave absorbing properties, SiCNWs and SiCNPs attained minimum reflection loss of -10.41 dB and -6.83 dB at 5.68 GHz and 17.68 GHz, respectively. The minimum reflection loss of SiCNPs and SiCNWs obtained in this study is much lower than the nanometer-SiC reported previously. These results suggested that SiCNWs can be an ideal candidate of microwave susceptors for various microwave applications
  • Publication
    Magnetic induction tomography for brain tissue imaging based on conductivity distribution for parkinson’s disease diagnosis
    Parkinson's disease is a prevalent neurodegenerative complication defined by the accumulation of alpha synuclein lewy bodies in the brain. Misdiagnosis results widespread of Parkinson’s disease because clinical diagnosis is challenging, underlining a need of a better detection technique, such as non-invasive magnetic induction tomography (MIT) technique. Non-invasive techniques for biological tissues imaging are becoming popular in biomedical engineering field. Therefore, MIT technology as a non-invasive technique has been encouraged in a medical field due to its advancement of technology in diagnosing diseases. The measurement parameters in MIT are passive electromagnetic properties (conductivity, permittivity, permeability) for biological tissue and the most dominant parameter in MIT is conductivity properties. It is uses a phase shift between a primary magnetic field and an induced field caused by a target object's conductivity. As a function of conductivity, the phase shift between the applied and secondary fields is expressed. Thus, the phase shift can be used to characterize the conductivity of a target object. The phase shift between the excitation and induced magnetic fields (EMF and IMF) reflects the change in conductivity in biological tissues. This paper focuses on the virtual simulation by using COMSOL Multi-physics for the design and development of MIT system that emphasizes on single channel magnetic induction tomography for biological tissue (bran tissue) imaging based on conductivity distribution for Parkinson’s disease diagnosis. The develop system employs the use of excitation coils to induce an electromagnetic field (e.m.f) in the brain tissue, which is then measured at the receiving side by sensors. The proposed system is capable of indicating Parkinson’s disease based on conductivity distribution. This method provides the valuable information of the brain abnormality based on differences of conductivities of normal brain and Parkinson’s disease brain tissues.