Now showing 1 - 3 of 3
No Thumbnail Available
Publication

Tool wear and surface evaluation in drilling fly ash geopolymer using HSS, HSS-Co, and HSS-TiN cutting tools

2021 , Mohd Fathullah Ghazli@Ghazali , Mohd. Mustafa Al Bakri Abdullah , Shayfull Zamree Abd. Rahim , Joanna Gondro , Paweł Pietrusiewicz , Sebastian Garus , Tomasz Stachowiak , Andrei Victor Sandu , Muhammad Faheem Mohd. Tahir , Mehmet Erdi Korkmaz , Mohamed Syazwan Osman

This paper reports on the potential use of geopolymer in the drilling process, with respect to tool wear and surface roughness. The objectives of this research are to analyze the tool life of three different economy-grade drill bit uncoated; high-speed steel (HSS), HSS coated with TiN (HSS-TiN), and HSS-cobalt (HSS-Co) in the drilling of geopolymer and to investigate the effect of spindle speed towards the tool life and surface roughness. It was found that, based on the range of parameters set in this experiment, the spindle speed is directly proportional to the tool wear and inversely proportional to surface roughness. It was also observed that HSS-Co produced the lowest value of surface roughness compared to HSS-TiN and uncoated HSS and therefore is the most favorable tool to be used for drilling the material. For HSS, HSS coated with TiN, and HSS-Co, only the drilling with the spindle speed of 100 rpm was able to drill 15 holes without surpassing the maximum tool wear of 0.10 mm. HSS-Co exhibits the greatest tool life by showing the lowest value of flank wear and produce a better surface finish to the sample by a low value of surface roughness value (Ra). This finding explains that geopolymer is possible to be drilled, and therefore, ranges of cutting tools and parameters suggested can be a guideline for researchers and manufacturers to drill geopolymer for further applications

No Thumbnail Available
Publication

Tool wear and surface evaluation in drilling fly ash geopolymer using HSS, HSS-Co, and HSS-TiN cutting tools

2021 , Mohd Fathullah Ghazli@Ghazali , Mohd. Mustafa Al Bakri Abdullah , Shayfull Zamree Abd. Rahim , Joanna Gondro , Paweł Pietrusiewicz , Sebastian Garus , Tomasz Stachowiak , Andrei Victor Sandu , Muhammad Faheem Mohd. Tahir , Mehmet Erdi Korkmaz , Mohamed Syazwan Osman

This paper reports on the potential use of geopolymer in the drilling process, with respect to tool wear and surface roughness. The objectives of this research are to analyze the tool life of three different economy-grade drill bit uncoated; high-speed steel (HSS), HSS coated with TiN (HSS-TiN), and HSS-cobalt (HSS-Co) in the drilling of geopolymer and to investigate the effect of spindle speed towards the tool life and surface roughness. It was found that, based on the range of parameters set in this experiment, the spindle speed is directly proportional to the tool wear and inversely proportional to surface roughness. It was also observed that HSS-Co produced the lowest value of surface roughness compared to HSS-TiN and uncoated HSS and therefore is the most favorable tool to be used for drilling the material. For HSS, HSS coated with TiN, and HSS-Co, only the drilling with the spindle speed of 100 rpm was able to drill 15 holes without surpassing the maximum tool wear of 0.10 mm. HSS-Co exhibits the greatest tool life by showing the lowest value of flank wear and produce a better surface finish to the sample by a low value of surface roughness value (Ra). This finding explains that geopolymer is possible to be drilled, and therefore, ranges of cutting tools and parameters suggested can be a guideline for researchers and manufacturers to drill geopolymer for further applications.

No Thumbnail Available
Publication

Thermal insulation and mechanical properties in the presence of glas bubble in fly ash geopolymer paste

2021 , Noor Fifinatasha Shahedan , Mohd. Mustafa Al Bakri Abdullah , Norsuria Mahmed , Liew Yun Ming , Shayfull Zamree Abd. Rahim , Ikmal Hakem A Aziz , Aeslina Abdul Kadir , Andrei Victor Sandu , Mohd Fathullah Ghazli@Ghazali

The density, compressive strength, and thermal insulation properties of fly ash geopolymer paste are reported. Novel insulation material of glass bubble was used as a replacement of fly ash binder to significantly enhance the mechanical and thermal properties compared to the geopolymer paste. The results showed that the density and compressive strength of 50% glass bubble was 1.45 g/ ely, meeting the standard requirement for structural concrete. Meanwhile, the compatibility of 50% glass bubbles tested showed that the thermal conductivity (0.898 W/mK), specific heat (2.141 MJ/m3 K), and thermal diffusivity(0.572 mm2/s) in meeting the same requirement. The improvement of thermal insulation properties revealed the potential use of glass bubbles as an insulation material in construction material