Options
Mohd Arif Anuar Mohd Salleh
Preferred name
Mohd Arif Anuar Mohd Salleh
Official Name
Mohd Arif Anuar, Mohd Salleh
Alternative Name
Mohd Salleh, Mohd Arif Anuar
Salleh, Mohd A.A.
Salleh, M. A.A.Mohd
Mohd Salleh, M. A.A.
Salleh, M. A.A.M.
Mohd Salleh, M. M.A.
Main Affiliation
Scopus Author ID
55543476900
Researcher ID
C-3386-2018
Now showing
1 - 2 of 2
-
PublicationMicrostructure evolution of ag/tio2 thin film( 2021-01-01)
;Mohd Izrul Izwan Ramli ;Nogita K. ;Yasuda H. ;Nabiałek M.Wysłocki J.J.Ag/TiO2 thin films were prepared using the sol-gel spin coating method. The microstruc-tural growth behaviors of the prepared Ag/TiO2 thin films were elucidated using real-time syn-chrotron radiation imaging, its structure was determined using grazing incidence X-ray diffraction (GIXRD), its morphology was imaged using the field emission scanning electron microscopy (FESEM), and its surface topography was examined using the atomic force microscope (AFM) in contact mode. The cubical shape was detected and identified as Ag, while the anatase, TiO2 thin film resembled a porous ring-like structure. It was found that each ring that coalesced and formed channels occurred at a low annealing temperature of 280◦C. The energy dispersive X-ray (EDX) result revealed a small amount of Ag presence in the Ag/TiO2 thin films. From the in-situ synchrotron radiation imaging, it was observed that as the annealing time increased, the growth of Ag/TiO2 also increased in terms of area and the number of junctions. The growth rate of Ag/TiO2 at 600 s was 47.26 µm2/s, and after 1200 s it decreased to 11.50 µm2/s and 11.55 µm2/s at 1800 s. Prolonged annealing will further decrease the growth rate to 5.94 µm2/s, 4.12 µm2/s and 4.86 µm2/s at 2400 s, 3000 s and 3600 s, respectively. -
PublicationEffects of Surface Finish on Sn-3.0Ag-0.5Cu Solder Joint Microstructure and Strength( 2021-03-01)
;Siti Farahnabilah Muhd Amli ;Mohd Izrul Izwan Ramli ;Yasuda H. ;Chaiprapa J.Nogita K.The effects of copper organic solderability preservative (Cu-OSP) and electroless nickel immersion gold (ENIG) surface finish reflowed on Sn-3.0Ag-0.5Cu (SAC305) solder have been investigated in detail. Besides conventional cross-sectional microstructure observation, advanced characterization techniques such as synchrotron radiography imaging and synchrotron micro-x-ray fluorescence (µ-XRF) were utilized to elucidate the microstructural evolution in the solder joints during soldering. Additionally, high-speed shear testing was performed to understand the influence of the surface finish on the solder joint strength. The results indicated that the presence of nickel (Ni) from the ENIG surface finish decreased the growth rate but increased the amount of small Cu6Sn5 primary intermetallics, resulting in a slight reduction of the average interfacial intermetallic compound (IMC) thickness in the SAC305/ENIG solder joints. Due to the refined control of the solder joint microstructure, the average high-speed shear strength was higher for as-reflowed SAC305/ENIG versus SAC305/Cu-OSP solder joints. These results indicate a significant influence of the surface finish on SAC305 solder joint microstructure and strength and could provide a basis to improve solder joint strength.