Options
Liew Yun Ming
Preferred name
Liew Yun Ming
Official Name
Liew Yun Ming
Alternative Name
Yun-Ming, Liew
Liew, Y. M.
Yun Ming, Liew
Ming, Liew Yun
Liew, Yun Ming
Ming, L. Y.
Main Affiliation
Scopus Author ID
57204242778
Researcher ID
S-7164-2019
Now showing
1 - 2 of 2
-
PublicationEffect of silica fume and alumina addition on the mechanical and microstructure of fly ash geopolymer concrete( 2022-01-01)
;Min Fong Sue ;Razi H.M. ;Low F.W. ;Ng Hui TenNg Yong SinThis paper discussed the effect of the addition of silica fume (2 wt.% and 4 wt.%) and alumina (2 wt.% and 4 wt.%) on the properties of fly ash geopolymer concrete. The fly ash geopolymer concrete achieved the highest 28-day compressive strength with 2 wt.% of silica fume (39 MPa) and 4 wt.% of alumina (41 MPa). The addition of 2 wt.% of silica fume increased the compressive strength by 105% with respect to the reference geopolymer (without additive). On the other hand, the compressive strength surged by 115% with 4 wt.% of alumina compared to the reference geopolymer. The addition of additives improved the compactness of the geopolymer matrix according to the morphology analysis.1 -
PublicationEFFECT OF SILICA FUME AND ALUMINA ADDITION ON THE MECHANICAL AND MICROSTRUCTURE OF FLY ASH GEOPOLYMER CONCRETE( 2022-01-01)
;Min Fong Sue ;Razi H.M. ;Low F.W. ;Ng Hui TenNg Yong SinThis paper discussed the effect of the addition of silica fume (2 wt.% and 4 wt.%) and alumina (2 wt.% and 4 wt.%) on the properties of fly ash geopolymer concrete. The fly ash geopolymer concrete achieved the highest 28-day compressive strength with 2 wt.% of silica fume (39 MPa) and 4 wt.% of alumina (41 MPa). The addition of 2 wt.% of silica fume increased the compressive strength by 105% with respect to the reference geopolymer (without additive). On the other hand, the compressive strength surged by 115% with 4 wt.% of alumina compared to the reference geopolymer. The addition of additives improved the compactness of the geopolymer matrix according to the morphology analysis.3