Options
Liew Yun Ming
Preferred name
Liew Yun Ming
Official Name
Liew Yun Ming
Alternative Name
Yun-Ming, Liew
Liew, Y. M.
Yun Ming, Liew
Ming, Liew Yun
Liew, Yun Ming
Ming, L. Y.
Main Affiliation
Scopus Author ID
57204242778
Researcher ID
S-7164-2019
Now showing
1 - 2 of 2
-
PublicationFormulation, mechanical properties and phase analysis of fly ash geopolymer with ladle furnace slag replacement( 2021)
;Ng Hui-Teng ;Kong Ern Hun ;Hasniyati Md RaziNg Yong-SingThis paper presents the formulation of fly ash (FA) geopolymer and the incorporation of ladle furnace slag (LFS) as a replacement to FA in geopolymer formation. The formulation of the LFS replacement was set at 10–40 wt.%. The geopolymer was formed by mixing FA and LFS with a sodium-based alkali activator. The FA geopolymer had a compressive strength of 38.9 MPa with the optimum formulation of 8 M NaOH concentration, AS/AA ratio of 3, and AA ratio of 1.5. The compressive strength was affected more significantly by the amorphous content. The most influential factors affecting the properties of FA geopolymer were: AS/AA ratio > AA ratio > NaOH concentration. Replacing LFS led to very little (4.1%) increment in the compressive strength. The LFS had little contribution in supplying Si, Al and Ca for the formation of the N-A-S-H and C-A-S-H network. But LFS acted as a filler and improved the compactness of the FA geopolymer. The mechanical performance of FA/LFS geopolymer was not governed by the amorphous content like the FA geopolymer, as LFS addition contributed to increasing crystalline content. New crystalline phases of calcite and CSH due to the addition of LFS helped to retain the compressive strength of FA geopolymer. Nevertheless, the outcome of the study proved that LFS can be blended with FA to produce geopolymers without severe deterioration in mechanical strength. LFS can be potentially added in geopolymers as filler to produce geopolymer mortar. -
PublicationEvaluation of flexural properties and characterisation of 10-mm thin geopolymer based on fly ash and ladle furnace slag( 2021)
;Ng Yong-Sing ;Lynette Wei Ling Chan ;Ng Hui-Teng ;Ong Shee-Ween ;Ooi Wan-EnHang Yong-JieThe formulation and flexural properties of thin fly ash geopolymers with thickness of merely 10 mm and replacement of ladle furnace slag to fly ash in thin geopolymer were presented. The formulation was discussed in terms of NaOH molarity, solid aluminosilicates-to-liquid alkali activator (S/L) mass ratio, and alkali activator (Na2SiO3/NaOH) mass ratio. Thin fly ash geopolymers with flexural strength and Young's modulus of 6.2 MPa and 0.14 GPa, respectively, were obtained by using 12 M NaOH, S/L ratio of 2.5 and Na2SiO3/NaOH ratio of 4.0. A high Na2SiO3/NaOH ratio was implemented for thin geopolymer synthesis to produce a more viscous slurry which helped to retain the shape of a thin geopolymer. The incorporation of ladle furnace slag up to 40 wt.% reported an increment of 26% in flexural strength up to 7.8 MPa as compared to pure fly ash geopolymers and the stiffness was increased to 0.19 GPa. Denser microstructure with improved compactness was observed as the ladle furnace slag acted as the filler. New crystalline phases of calcium silicate hydrate (C–S–H) were formed and coexisted with the geopolymer matrix, which consequently enhanced the flexural strength of thin fly ash geopolymer. This proved that the ladle furnace slag has the potential to be utilised in geopolymer synthesis and will enhance the flexural properties of thin geopolymers. The flexural performance of thin geopolymers in this study was considerably good as the thin geopolymers exhibited comparatively similar flexural strengths, but a higher strength/thickness ratio as compared to geopolymers with thickness greater than 40 mm.3 2