Now showing 1 - 10 of 13
  • Publication
    Preparation of fly Ash-Ladle furnace slag blended geopolymer foam via Pre-Foaming method with polyoxyethylene alkyether sulphate incorporation
    ( 2022)
    Ng Hui-Teng
    ;
    ; ; ;
    Catleya Rojviriya
    ;
    Hasniyati Md Razi
    ;
    Sebastian Garus
    ;
    Marcin Nabiałek
    ;
    Wojciech Sochacki
    ;
    Ilham Mukriz Zainal Abidin
    ;
    Ng Yong-Sing
    ;
    Andrei Victor Sandu
    ;
    Agata Śliwa
    This paper uses polyoxyethylene alkyether sulphate (PAS) to form foam via pre-foaming method, which is then incorporated into geopolymer based on fly ash and ladle furnace slag. In the literature, only PAS-geopolymer foams made with single precursor were studied. Therefore, the performance of fly ash-slag blended geopolymer with and without PAS foam was investigated at 29–1000 °C. Unfoamed geopolymer (G-0) was prepared by a combination of sodium alkali, fly ash and slag. The PAS foam-to-paste ratio was set at 1.0 and 2.0 to prepare geopolymer foam (G-1 and G-2). Foamed geopolymer showed decreased compressive strength (25.1–32.0 MPa for G-1 and 21.5–36.2 MPa for G-2) compared to G-0 (36.9–43.1 MPa) at 29–1000 °C. Nevertheless, when compared to unheated samples, heated G-0 lost compressive strength by 8.7% up to 1000 °C, while the foamed geopolymer gained compressive strength by 68.5% up to 1000 °C. The thermal stability of foamed geopolymer was greatly improved due to the increased porosity, lower thermal conductivity, and incompact microstructure, which helped to reduce pressure during moisture evaporation and resulted in lessened deterioration.
  • Publication
    Formulation, mechanical properties and phase analysis of fly ash geopolymer with ladle furnace slag replacement
    ( 2021)
    Ng Hui-Teng
    ;
    ;
    Kong Ern Hun
    ;
    ; ;
    Hasniyati Md Razi
    ;
    Ng Yong-Sing
    This paper presents the formulation of fly ash (FA) geopolymer and the incorporation of ladle furnace slag (LFS) as a replacement to FA in geopolymer formation. The formulation of the LFS replacement was set at 10–40 wt.%. The geopolymer was formed by mixing FA and LFS with a sodium-based alkali activator. The FA geopolymer had a compressive strength of 38.9 MPa with the optimum formulation of 8 M NaOH concentration, AS/AA ratio of 3, and AA ratio of 1.5. The compressive strength was affected more significantly by the amorphous content. The most influential factors affecting the properties of FA geopolymer were: AS/AA ratio > AA ratio > NaOH concentration. Replacing LFS led to very little (4.1%) increment in the compressive strength. The LFS had little contribution in supplying Si, Al and Ca for the formation of the N-A-S-H and C-A-S-H network. But LFS acted as a filler and improved the compactness of the FA geopolymer. The mechanical performance of FA/LFS geopolymer was not governed by the amorphous content like the FA geopolymer, as LFS addition contributed to increasing crystalline content. New crystalline phases of calcite and CSH due to the addition of LFS helped to retain the compressive strength of FA geopolymer. Nevertheless, the outcome of the study proved that LFS can be blended with FA to produce geopolymers without severe deterioration in mechanical strength. LFS can be potentially added in geopolymers as filler to produce geopolymer mortar.
  • Publication
    Elevated-Temperature performance, combustibility and fire propagation index of Fly Ash-Metakaolin blend geopolymers with addition of Monoaluminium Phosphate (MAP) and Aluminum Dihydrogen Triphosphate (ATP)
    ( 2021)
    Khairunnisa Zulkifly
    ;
    ; ;
    Ridho Bayuaji
    ;
    ;
    Shamsul Bin Ahmad
    ;
    Tomasz Stachowiak
    ;
    Janusz Szmidla
    ;
    Joanna Gondro
    ;
    Bartłomiej Jeż
    ;
    Mohd Suhaimi Bin Khalid
    ;
    Sebastian Garus
    ;
    Ong Shee-Ween
    ;
    Ooi Wan-En
    ;
    Ng Hui-Teng
    Thermal performance, combustibility, and fire propagation of fly ash-metakaolin (FA-MK) blended geopolymer with the addition of aluminum triphosphate, ATP (Al(H2PO4)3), and monoaluminium phosphate, MAP (AlPO4) were evaluated in this paper. To prepare the geopolymer mix, fly ash and metakaolin with a ratio of 1:1 were added with ATP and MAP in a range of 0–3% by weight. The fire/heat resistance was evaluated by comparing the residual compressive strengths after the elevated temperature exposure. Besides, combustibility and fire propagation tests were conducted to examine the thermal performance and the applicability of the geopolymers as passive fire protection. Experimental results revealed that the blended geopolymers with 1 wt.% of ATP and MAP exhibited higher compressive strength and denser geopolymer matrix than control geopolymers. The effect of ATP and MAP addition was more obvious in unheated geopolymer and little improvement was observed for geopolymer subjected to elevated temperature. ATP and MAP at 3 wt.% did not help in enhancing the elevated-temperature performance of blended geopolymers. Even so, all blended geopolymers, regardless of the addition of ATP and MAP, were regarded as the noncombustible materials with negligible (0–0.1) fire propagation index.
  • Publication
    Improvements of flexural properties and thermal performance in thin geopolymer based on fly ash and ladle furnace slag using borax decahydrates
    ( 2022)
    Ng Yong-Sing
    ;
    ; ; ;
    Phakkhananan Pakawanit
    ;
    Petrica Vizureanu
    ;
    Mohd Suhaimi Khalid
    ;
    Ng Hui-Teng
    ;
    Hang Yong-Jie
    ;
    Marcin Nabiałek
    ;
    Paweł Pietrusiewicz
    ;
    Sebastian Garus
    ;
    Wojciech Sochacki
    ;
    Agata Śliwa
    This paper elucidates the influence of borax decahydrate addition on the flexural and thermal properties of 10 mm thin fly ash/ladle furnace slag (FAS) geopolymers. The borax decahydrate (2, 4, 6, and 8 wt.%) was incorporated to produce FAB geopolymers. Heat treatment was applied with temperature ranges of 300 °C, 600 °C, 900 °C, 1000 °C and 1100 °C. Unexposed FAB geopolymers experienced a drop in strength due to a looser matrix with higher porosity. However, borax decahydrate inclusion significantly enhanced the flexural performance of thin geopolymers after heating. FAB2 and FAB8 geopolymers reported higher flexural strength of 26.5 MPa and 47.8 MPa, respectively, at 1000 °C as compared to FAS geopolymers (24.1 MPa at 1100 °C). The molten B2O3 provided an adhesive medium to assemble the aluminosilicates, improving the interparticle connectivity which led to a drastic strength increment. Moreover, the borax addition reduced the glass transition temperature, forming more refractory crystalline phases at lower temperatures. This induced a significant strength increment in FAB geopolymers with a factor of 3.6 for FAB8 at 900 °C, and 4.0 factor for FAB2 at 1000 °C, respectively. Comparatively, FAS geopolymers only achieved 3.1 factor in strength increment at 1100 °C. This proved that borax decahydrate could be utilized in the high strength development of thin geopolymers.
  • Publication
    Evaluation of flexural properties and characterisation of 10-mm thin geopolymer based on fly ash and ladle furnace slag
    ( 2021)
    Ng Yong-Sing
    ;
    ; ; ;
    Lynette Wei Ling Chan
    ;
    Ng Hui-Teng
    ;
    Ong Shee-Ween
    ;
    Ooi Wan-En
    ;
    Hang Yong-Jie
    The formulation and flexural properties of thin fly ash geopolymers with thickness of merely 10 mm and replacement of ladle furnace slag to fly ash in thin geopolymer were presented. The formulation was discussed in terms of NaOH molarity, solid aluminosilicates-to-liquid alkali activator (S/L) mass ratio, and alkali activator (Na2SiO3/NaOH) mass ratio. Thin fly ash geopolymers with flexural strength and Young's modulus of 6.2 MPa and 0.14 GPa, respectively, were obtained by using 12 M NaOH, S/L ratio of 2.5 and Na2SiO3/NaOH ratio of 4.0. A high Na2SiO3/NaOH ratio was implemented for thin geopolymer synthesis to produce a more viscous slurry which helped to retain the shape of a thin geopolymer. The incorporation of ladle furnace slag up to 40 wt.% reported an increment of 26% in flexural strength up to 7.8 MPa as compared to pure fly ash geopolymers and the stiffness was increased to 0.19 GPa. Denser microstructure with improved compactness was observed as the ladle furnace slag acted as the filler. New crystalline phases of calcium silicate hydrate (C–S–H) were formed and coexisted with the geopolymer matrix, which consequently enhanced the flexural strength of thin fly ash geopolymer. This proved that the ladle furnace slag has the potential to be utilised in geopolymer synthesis and will enhance the flexural properties of thin geopolymers. The flexural performance of thin geopolymers in this study was considerably good as the thin geopolymers exhibited comparatively similar flexural strengths, but a higher strength/thickness ratio as compared to geopolymers with thickness greater than 40 mm.
      3  2
  • Publication
    Thin fly ash/ ladle furnace slag geopolymer: Effect of elevated temperature exposure on flexural properties and morphological characteristics
    ( 2022-06-15)
    Ng Yong-Sing
    ;
    ; ; ;
    Pakawanit P.
    ;
    Chan L.W.L.
    ;
    Ng Hui-Teng
    ;
    Ong Shee Ween
    ;
    Ooi Wan En
    ;
    Hang Yong-Jie
    The flexural properties and thermal performance of 10 mm-thin geopolymers made from fly ash and ladle furnace slag were evaluated before and after exposure to elevated temperatures (300 °C, 600 °C, 900 °C, 1100 °C and 1150 °C). Class F fly ash was mixed with liquid sodium silicate (Na2SiO3) and 12 M sodium hydroxide (NaOH) solution using aluminosilicate/activator ratio of 1:2.5 and Na2SiO3/NaOH ratio of 1:4 to synthesise thin fly ash (FA) geopolymers. 40 wt% of ladle furnace slag was partially replacing fly ash to produce fly ash/slag-based (FAS) geopolymers. Thermal treatment enhanced the flexural strength of thin geopolymers. In comparison to the unexposed specimen, the flexural strength of FA geopolymers at 1150 °C and FAS geopolymers 1100 °C was increased by 161.3% to 16.2 MPa and 208.9% to 24.1 MPa, respectively. A more uniform heating was achieved in thin geopolymers which favoured the phase transformation at high temperatures and contributed to the substantial increase in flexural strength. The joint effect of elevated temperature exposure and the incorporation of ladle furnace slag further improved the flexural strength of thin geopolymers. The calcium-rich slag refined the pore structure and increased the crystallinity of thin geopolymers which aided in high strength development.
      1
  • Publication
    Improvements of Flexural Properties and Thermal Performance in Thin Geopolymer Based on Fly Ash and Ladle Furnace Slag Using Borax Decahydrates
    ( 2022-06-01)
    Ng Yong-Sing
    ;
    ; ; ;
    Pakawanit P.
    ;
    Vizureanu P.
    ;
    Khalid M.S.
    ;
    Ng Hui-Teng
    ;
    Hanh Yong-Jie
    ;
    Nabiałek M.
    ;
    Pietrusiewicz P.
    ;
    Garus S.
    ;
    Sochacki W.
    ;
    Śliwa A.
    This paper elucidates the influence of borax decahydrate addition on the flexural and thermal properties of 10 mm thin fly ash/ladle furnace slag (FAS) geopolymers. The borax decahydrate (2, 4, 6, and 8 wt.%) was incorporated to produce FAB geopolymers. Heat treatment was applied with temperature ranges of 300◦C, 600◦C, 900◦C, 1000◦C and 1100◦C. Unexposed FAB geopolymers experienced a drop in strength due to a looser matrix with higher porosity. However, borax decahydrate inclusion significantly enhanced the flexural performance of thin geopolymers after heating. FAB2 and FAB8 geopolymers reported higher flexural strength of 26.5 MPa and 47.8 MPa, respectively, at 1000◦C as compared to FAS geopolymers (24.1 MPa at 1100◦C). The molten B2O3 provided an adhesive medium to assemble the aluminosilicates, improving the interparticle connectivity which led to a drastic strength increment. Moreover, the borax addition reduced the glass transition temperature, forming more refractory crystalline phases at lower temperatures. This induced a significant strength increment in FAB geopolymers with a factor of 3.6 for FAB8 at 900◦C, and 4.0 factor for FAB2 at 1000◦C, respectively. Comparatively, FAS geopolymers only achieved 3.1 factor in strength increment at 1100◦C. This proved that borax decahydrate could be utilized in the high strength development of thin geopolymers.
      1
  • Publication
    Thin fly ash/ ladle furnace slag geopolymer: Effect of elevated temperature exposure on flexural properties and morphological characteristics
    ( 2022-06-15)
    Yong-Sing Ng
    ;
    ; ; ;
    Pakawanit P.
    ;
    Chan L.W.L.
    ;
    Ng Hui-Teng
    ;
    Ong Shee-Ween
    ;
    Ooi Wan-En
    ;
    Hang Yong-Jie
    The flexural properties and thermal performance of 10 mm-thin geopolymers made from fly ash and ladle furnace slag were evaluated before and after exposure to elevated temperatures (300 °C, 600 °C, 900 °C, 1100 °C and 1150 °C). Class F fly ash was mixed with liquid sodium silicate (Na2SiO3) and 12 M sodium hydroxide (NaOH) solution using aluminosilicate/activator ratio of 1:2.5 and Na2SiO3/NaOH ratio of 1:4 to synthesise thin fly ash (FA) geopolymers. 40 wt% of ladle furnace slag was partially replacing fly ash to produce fly ash/slag-based (FAS) geopolymers. Thermal treatment enhanced the flexural strength of thin geopolymers. In comparison to the unexposed specimen, the flexural strength of FA geopolymers at 1150 °C and FAS geopolymers 1100 °C was increased by 161.3% to 16.2 MPa and 208.9% to 24.1 MPa, respectively. A more uniform heating was achieved in thin geopolymers which favoured the phase transformation at high temperatures and contributed to the substantial increase in flexural strength. The joint effect of elevated temperature exposure and the incorporation of ladle furnace slag further improved the flexural strength of thin geopolymers. The calcium-rich slag refined the pore structure and increased the crystallinity of thin geopolymers which aided in high strength development.
      1
  • Publication
    Preparation of Fly Ash-Ladle Furnace Slag Blended Geopolymer Foam via Pre-Foaming Method with Polyoxyethylene Alkyether Sulphate Incorporation
    ( 2022-06-01)
    Ng Hui-Teng
    ;
    ; ; ;
    Rojviriya C.
    ;
    Razi H.M.
    ;
    Garus S.
    ;
    Nabiałek M.
    ;
    Sochacki W.
    ;
    Abidin I.M.Z.
    ;
    Ng Yong-Sing
    ;
    Śliwa A.
    ;
    Sandu A.V.
    This paper uses polyoxyethylene alkyether sulphate (PAS) to form foam via pre-foaming method, which is then incorporated into geopolymer based on fly ash and ladle furnace slag. In the literature, only PAS-geopolymer foams made with single precursor were studied. Therefore, the performance of fly ash-slag blended geopolymer with and without PAS foam was investigated at 29–1000 °C. Unfoamed geopolymer (G-0) was prepared by a combination of sodium alkali, fly ash and slag. The PAS foam-to-paste ratio was set at 1.0 and 2.0 to prepare geopolymer foam (G-1 and G-2). Foamed geopolymer showed decreased compressive strength (25.1–32.0 MPa for G-1 and 21.5–36.2 MPa for G-2) compared to G-0 (36.9–43.1 MPa) at 29–1000 °C. Nevertheless, when compared to unheated samples, heated G-0 lost compressive strength by 8.7% up to 1000 °C, while the foamed geopolymer gained compressive strength by 68.5% up to 1000 °C. The thermal stability of foamed geopolymer was greatly improved due to the increased porosity, lower thermal conductivity, and incompact microstructure, which helped to reduce pressure during moisture evaporation and resulted in lessened deterioration.
      1
  • Publication
    Effect of silica fume and alumina addition on the mechanical and microstructure of fly ash geopolymer concrete
    ( 2021)
    Fong Sue Min
    ;
    ; ; ;
    Hasniyati Md Razi
    ;
    Foo Wah Low
    ;
    Ng Hui-Teng
    ;
    Ng Yong-Sing
    This paper discussed the effect of the addition of silica fume (2 wt.% and 4 wt.%) and alumina (2 wt.% and 4 wt.%) on the properties of fly ash geopolymer concrete. The fly ash geopolymer concrete achieved the highest 28-day compressive strength with 2 wt.% of silica fume (39 MPa) and 4 wt.% of alumina (41 MPa). The addition of 2 wt.% of silica fume increased the compressive strength by 105% with respect to the reference geopolymer (without additive). On the other hand, the compressive strength surged by 115% with 4 wt.% of alumina compared to the reference geopolymer. The addition of additives improved the compactness of the geopolymer matrix according to the morphology analysis.
      1  2