Options
Huzairy Hassan
Preferred name
Huzairy Hassan
Official Name
Hassan, Huzairy
Alternative Name
Hassan, H.
Hassan, Huzairy
Main Affiliation
Scopus Author ID
55389539900
Researcher ID
GYR-0674-2022
Now showing
1 - 2 of 2
-
PublicationChloramphenicol and methylene blue adsorption by modestly treated paper sewage sludge-based activated carbon( 2023-12-01)
;Aziz A.Ahmad M.A.Refractory pollutants like pharmaceuticals and dyes have become excessively prevalent in most Malaysian water bodies because of the growing textile and pharmaceutical industries. Hence, this work employed activated carbon prepared from freely available paper mill sewage sludge for removing chloramphenicol (CAP) and methylene blue (MB). Modest treatment of low-temperature carbonisation assisted with a short activation time of microwave radiation had been used. Analysis of variance of central composite design resulted in the optimum conditions of 440-W radiation power and 3-min activation time for optimum removal of 70% CAP and 51% MB. The surface area of the paper mill sewage sludge activated carbon (PMSSAC) improved greatly from 1.14 to 412 m2/g, with the highest adsorption capacity of 13 mg/g. The scanning electron microscope images demonstrated the efficiency of microwave radiation treatment, where more cavities and pores were observed on activated carbon for improved adsorbate penetration. The Freundlich isotherm and the pseudo-second-order model appeared to best fit the kinetic data. Furthermore, the high affinity of adsorbate towards the PMSSAC surface could be the plausible mechanism, as indicated by the high amount of adsorption within the initial stage of adsorption. Thus, it is envisaged that our PMSSAC could be effectively employed in actual wastewater systems, as evidenced by excellent CAP and MB removal. Graphical abstract: [Figure not available: see fulltext.]1 -
PublicationMethylene blue dye removal using Parkia speciosa pod based activated carbon( 2021-05-24)
;Aziz A. ;Yahaya N.K.E.M. ;Karim J.Ahmad M.A.Critical environmental issues have emerged from wastewater of industrial textile effluent discharge which consists of refractory dyes. Effective methods such as activated carbon (AC) adsorption is extremely demanded for solving this environmental pollution. In this study, low-cost AC was developed from Parkia speciosa pods (PSP) using microwave-assisted activation technique for the methylene blue (MB) dye adsorption. Optimization on activating conditions in terms of MB removal and AC yield was performed using response surface methodology (RSM). The optimum microwave irradiation power (MIP) of 416.50 W was found to have significant effect on MB removal at 2 minutes activation. The Parkia speciosa pods activated carbon (PSPAC) possessed intermediate surface area and total pore volume of 51.3 m2/g and 0.0681 cm3/g, respectively. PSPAC surface morphology was microscopically observed with highly porous structure indicating characteristics of good AC. Batch adsorption studies with various initial concentrations discovered that MB adsorption increased with increasing initial concentrations and contact time. The experimental data was in close fit using Langmuir isotherm and followed pseudo-first-order kinetic models. The MB dye adsorption process was governed by simultaneous surface adsorption and intraparticle diffusion. The results of studies proved that PSPAC is a potential adsorbent for dye-contaminated wastewater.1