Options
Heah Cheng Yong
Preferred name
Heah Cheng Yong
Official Name
Heah, Cheng Yong
Alternative Name
Yong, Heah Cheng
Yong, H. C.
Heah, Cheng Yong
Heah, C. Y.
Cheng-Yong, Heah
Cheng Yong, Heah
Main Affiliation
Scopus Author ID
54402789500
Researcher ID
S-7139-2019
Now showing
1 - 4 of 4
-
PublicationFlexural properties of thin fly ash geopolymers at elevated temperature( 2021)
;Yong-Sing Ng ;Hui-Teng NgLynette Wei Ling ChanThis paper reports on the flexural properties of thin fly ash geopolymers exposed to elevated temperature. The thin fly ash geopolymers (dimension = 160 mm × 40 mm × 10 mm) were synthesised using12M NaOH solution mixed with designed solidsto-liquids ratio of 1:2.5 and Na2SiO3/NaOH ratio of 1:4 and underwent heat treatment at different elevated temperature (300°C, 600°C, 900°C and 1150°C) after 28 days of curing. Flexural strength test was accessed to compare the flexural properties while X-Ray Diffraction (XRD) analysis was performed to determine the phase transformation of thin geopolymers at elevated temperature. Results showed that application of heat treatment boosted the flexural properties of thin fly ash geopolymers as the flexural strength increased from 6.5 MPa (room temperature) to 16.2 MPa (1150°C). XRD results showed that the presence of crystalline phases of albite and nepheline contributed to the increment in flexural strength. -
PublicationFormulation, mechanical properties and phase analysis of fly ash geopolymer with ladle furnace slag replacement( 2021)
;Ng Hui-Teng ;Kong Ern Hun ;Hasniyati Md RaziNg Yong-SingThis paper presents the formulation of fly ash (FA) geopolymer and the incorporation of ladle furnace slag (LFS) as a replacement to FA in geopolymer formation. The formulation of the LFS replacement was set at 10–40 wt.%. The geopolymer was formed by mixing FA and LFS with a sodium-based alkali activator. The FA geopolymer had a compressive strength of 38.9 MPa with the optimum formulation of 8 M NaOH concentration, AS/AA ratio of 3, and AA ratio of 1.5. The compressive strength was affected more significantly by the amorphous content. The most influential factors affecting the properties of FA geopolymer were: AS/AA ratio > AA ratio > NaOH concentration. Replacing LFS led to very little (4.1%) increment in the compressive strength. The LFS had little contribution in supplying Si, Al and Ca for the formation of the N-A-S-H and C-A-S-H network. But LFS acted as a filler and improved the compactness of the FA geopolymer. The mechanical performance of FA/LFS geopolymer was not governed by the amorphous content like the FA geopolymer, as LFS addition contributed to increasing crystalline content. New crystalline phases of calcite and CSH due to the addition of LFS helped to retain the compressive strength of FA geopolymer. Nevertheless, the outcome of the study proved that LFS can be blended with FA to produce geopolymers without severe deterioration in mechanical strength. LFS can be potentially added in geopolymers as filler to produce geopolymer mortar. -
PublicationCold-pressed fly ash geopolymers: effect of formulation on mechanical and morphological characteristics( 2021)
;Ong Shee-Ween ;Lynette Wei Ling Chan ;Ooi Wan-En ;Ng Yong-SingThis research uses low alkali activator content and cold pressing technique for fly ash-based geopolymers formation under room temperature condition. The geopolymers were prepared using four different parameters: fly ash/alkali activator ratio, sodium hydroxide concentration, sodium silicate/sodium hydroxide ratio and pressing force. The results indicated that the compressive strength (114.2 MPa) and flexural strength (29.9 MPa) of geopolymers maximised at a fly ash/alkali activator ratio of 5.5, a 14 M sodium hydroxide concentration, a sodium silicate/sodium hydroxide ratio of 1.5 and a pressing force of 5 tons (pressing stress of 100.0 MPa and 155.7 MPa for compressive and flexural samples, respectively). The degree of reaction (40.1%) enhanced the structure compactness with minimum porosity. The improved mechanical properties confirmed that a high strength pressed geopolymer could be formed at low alkali activator content without the aid of temperature.9 21 -
PublicationEffect of sodium aluminate on the fresh and hardened properties of fly ash-based one-part geopolymer( 2021)
;Ooi Wan-En ;Ong Shee-WeenAndrei Victor SanduThe one-part geopolymer binder was synthesis from the mixing of aluminosilicate material with solid alkali activators. The properties of one-part geopolymers vary according to the type and amount of solid alkali activators used. This paper presents the effect of various sodium metasilicate-to-sodium aluminate (NaAlO2/Na2SiO3) ratios on fly ash-based one-part geopolymer. The NaAlO2/Na2SiO3 ratios were set at 1.0 to 3.0. Setting time of fresh one-part geopolymer was examined through Vicat needle apparatus. Mechanical and microstructural properties of developed specimens were analysed after 28 days of curing in ambient condition. The study concluded that an increase in NaAlO2 content delayed the setting time of one-part geopolymer paste. The highest compressive strength was achieved at the NaAlO2/Na2SiO3 ratio of 2.5, which was 33.65 MPa. The microstructural analysis revealed a homogeneous structure at the optimum ratio. While the sodium aluminium silicate hydrate (N-A-S-H) and anorthite phases were detected from the XRD analysis.1 9