Now showing 1 - 10 of 10
Thumbnail Image
Publication

Mixed Matrix Membrane (MMMs) as Membrane Based Separation Technology: A Review

2023-01-01 , Pusphanathan K. , Hafiza Shukor , Shoparwe N.F. , Makhtar M.M.Z. , Zainuddin N.I. , Jullok N.

Mixed matrix membrane (MMMs) is an innovative membrane based-separation technology that plays an essential role in liquid and gas separation and purification recently. This review emphasizes mainly on the current MMMs technology. The discussion begins with a background of the MMMs technologies, followed by a comparison between the MMMs technology porous and non-porous membranes. Following that, state-of-the-art MMMs are featured, which contain a variety of polymers and non-polymers, as well as inorganic fillers and materials. The binary filler approach is also explained, which combines two filler materials to achieve synergistic improvements in MMMs. The development of new robust, high-performance materials is one type of revolutionary membrane preparation approach for harsh and inconsiderate environments. In comparison to pristine polymeric membranes, blended mixed matrix membranes with polymer, solvent, and additives are believed for efficient performance. In addition, fabrication strategies for MMMs preparation are addressed. The fabrication technique can be used to improve membrane performance in a number of ways, including resilience to extremes in process conditions and higher mixture resolution when separating gases and liquids. After that, membrane characterization is performed to analyze the membrane's structural and morphological properties. Based on that, critical evaluation of the performances of the MMMs based on the characterization of the membrane is evaluated in context. Finally, the opportunities, as well as future prospects for the integration of MMMs units for process intensification in various sectors, are also significant of the review.

Thumbnail Image
Publication

Cyclic voltammetry studies of bioanode microbial fuel fells from batch culture of Geobacter sulfurreducens

2021-05-24 , Shoparwe N.F. , Makhtar M.M.Z. , Sata S.A. , Kew W.S. , Mohamad M. , Hafiza Shukor

The present study aims to investigate the performance of batch culture of Geobacter sulfurreducens (G. sulfurreducens) for electrical current generation via cyclic voltammetry (CV) method. The CV study was performed with an applied voltage in the range of -0.1 to 0.1 V against the standard calomel electrode (SCE) during the cell growth and attachment of G. sulfurreducens on graphite felt and initial acetate concentration of 20 mM. The kinetics of electrode reaction was investigated by conducting CV experiments at different scanning rates of 5, 10, 20, 50 and 100 mVs-1. The diffusion coefficients (D) and heterogeneous electron transfer rate constant (ko) of both anodic and cathodic process were 1.04 x10-5 cm2.s-1, 1.73x10-6 cm2.s-1, 0.0004 cm.s-1 and 0.0011 cm.s-1, respectively. The obtained results showed that the anode exhibits high bioeletrocatalytic activity due to the attachment of G. sulfurreducens on the anode surface.

Thumbnail Image
Publication

Biomass to biobutanol: Current trends and challenges

2024-08-23 , Amin M.A. , Hafiza Shukor , Shoparwe N.F. , Makhtar M.M.Z. , Jalil R.

The term "biofuel" refers to a liquid or gas fuel obtained mostly from biomass for use in transportation. Biobutanol is a potential replacement biofuel for fossil-based liquid fuels as they become depleted. Biobutanol is a transportation fuel that may be simply combined with either gas or petrol at any ratio. Clostridia are the most prevalent fermentative organisms used in biobutanol production. It might well be recognized for its ability to use the acetone-butanol-ethanol (ABE) fermentation route to convert various types of renewable biomass to biobutanol. Various aspects of biobutanol fermentation, including butanol toxicity and product titer, have also been addressed. The recent advancement in lignocellulosic biomass treatment technology, which is significantly greener and safer for the environment, has been clearly articulated. This chapter also covers several metabolic engineering and simple engineering laboratory approaches such as Adaptive Laboratory Evolution (ALE) for strain improvement to overcome butanol toxicity. These biobutanol difficulties could be solved to improve microorganism resistance to high solvent concentrations and hence increase biobutanol output. The final section of this chapter will discuss the future of biobutanol production as a new sustainable and renewable future transportation fuel. Overall, this chapter will provide a better grasp of current trends and issues in biomass-based biobutanol production.

Thumbnail Image
Publication

Methane Biogas Production in Malaysia: Challenge and Future Plan

2022-01-01 , Amin M.A. , Hafiza Shukor , Yin L.S. , Kasim F.H. , Shoparwe N.F. , Makhtar M.M.Z. , Yaser A.Z.

Biomethane is a sustainable energy that is produced from an organic and renewable resource. As the second-largest oil palm producer in the world, palm oil mill effluent (POME) is the primary source of biomethane generation in Malaysia. POME is the by-product of palm oil extraction and is extensively employed as a feedstock for the production of biomethane. Malaysia has an equatorial environment with humid and hot weather; this climate is conducive to the cultivation of numerous agricultural crops. A considerable number of agricultural wastes and residues are produced by agricultural crops, however, only 27% of them are used as fuel or to create useable products. Several publications have been published on the production of biomethane from POME; nevertheless, additional research is required on the use of other bioresources and technologies for biomethane production in Malaysia. In addition, there is a lack of comprehensive information on the future development of biomethane production in Malaysia; thus, to fill this gap, this review paper focuses on the challenges and future of Malaysia, which puts an emphasis on POME and also includes other alternative options of bioresources that can be the future feedstock for biomethane production in Malaysia. To the best of our knowledge, this is the first paper to provide a comprehensive overview of the biogas trend in Malaysia in terms of challenges and current biomethane development, as well as detailed information on a number of leading companies that are currently active in Malaysia biogas industry.

Thumbnail Image
Publication

Inhibition Study on the Growth of Clostridium Saccharoperbutylacetonicum N1-4 (ATCC 13564) for the Production of Biobutanol in ABE Fermentation

2023-01-01 , Amin M.A. , Hafiza Shukor , Shoparwe N.F. , Makhtar M.M.Z. , Abdeshahian P. , Oladokun S.O.

In this present study, the inhibition effect of different concentrations of sugar degradation products in upstream processing (Hydroxymethylfurfural (HMF) and Furfural) and butanol as product inhibition in downstream processing on the growth of Clostridium saccharoperbutylacetonicum N1-4 (ATCC 13564) for the production of biobutanol in ABE Fermentation has been investigated. It was found that the presence of HMF and Furfural is non-toxic to cell growth and biobutanol production at concentrations below 3 g/L in the fermentation medium. The specific growth rate for both HMF and furfural was 0.067 h−1 and 0.066 h−1 respectively which is very close to the control medium without any inhibitor addition (0.068 h−1). Surprisingly, the addition of 1 g/L HMF has improved the yield of biobutanol from 0.020 g/g (control) to 0.034 g/g and the addition of 1 g/L Furfural has improved the yield of biobutanol to 0.042 g/g. Butanol inhibition study on the growth of C. saccharoperbutylacetonicum N1-4 (ATCC 13564) shows the decrease of specific growth rate from 0.071 to 0.065 h−1 when 5 g/L butanol was added. 15 g/L of butanol addition has caused a significant drop in the specific growth rate to 0.011 h−1 with an inhibitory effect of 85.7%. This result reveals that sugar degradation product has an inhibitory effect on the growth of microorganisms and biobutanol production at a certain concentration, and this ABE fermentation suffers from product inhibition. Therefore, the development of a robust strain is necessary to make this biobutanol industrially competitive even in the presence of the inhibitory compound.

Thumbnail Image
Publication

Bibliometric Analysis on Biobutanol Production Research Trends from 2010-2022 using Scopus Database

2024-03-01 , Amin M.A. , Hafiza Shukor , Makhtar M.M.Z. , Ismail M.I. , Yaakop N.S. , Shafiq M.D. , Shoparwe N.F.

The global demand for biofuels as an alternative energy source is on the rise due to the anticipated decline in fossil fuel (gasoline). Biobutanol, among various biofuels, has garnered significant attention for its advanced features and suitability as an alternative to fossil fuels. Recognizing the importance of understanding research issues and fostering collaborative networks, this bibliometric analysis focuses on synthesizing research trends in biobutanol production over the past 12 years. Examining 357 Scopus-indexed documents, the study shows that over 80% of relevant articles were published after 2010, indicating the recent emergence of literature in this field. Citation analysis identifies publishing trends dating back to 2010, highlighting leading scholars. In 2016, 47 publications in Chemical Engineering were attributed to the field, with Professor Sahaid authoring 12 publications, primarily affiliated with UKM. Chemical Engineering comprised the predominant subject area, with articles constituting 75.07% of total publications. Bioresource Technology was the primary source title, and the keyword Biobutanol was frequently associated with the research (92.16%). UKM led in institutional contributions with 12 publications, while India had the highest total publications at 17.65%, and Malaysia contributed 6.44%. The majority of publications (88.24%) originated from journal publications, and English was the predominant language, accounting for 96.64% of the publications. This paper underscores the recent surge in biobutanol research and the importance of collaborative efforts for further advancements.

Thumbnail Image
Publication

Microbial Fuel Cell: Simultaneous Bioremediation and Energy Recovery Technology

2023-01-01 , Pusphanathan K. , Tuesday M. , Mohamad Sobri M.F. , Mohd Zaini Makhtar M. , Shoparwe N.F. , Hafiza Shukor , Zainuddin N.I.

Microbial fuel cells (MFCs) are a promising technology for producing electricity from a variety of materials, including natural organic matter, complex organic waste, and renewable biomass, and can be advantageously combined with wastewater treatment applications. For this reason, it represents a superb option for a long-term, eco-friendly renewable energy supply. The current review article discusses about Malaysia's historical energy consumption trend. Following that, Malaysia experienced a revolution in energy-based policies, such as the National Energy Policy 1979, which focuses on the effectiveness of energy supply while minimising negative environmental impacts through the development of new technologies such as MFC technology. In addition, the concept and operation principle of MFC are discussed in this review. This paper focuses on single-chambered and dual-chambered MFC. The performance of MFCs is influenced by the substrate used so the various substrates that are commonly used today are also discussed.

Thumbnail Image
Publication

Efficiency of Fabricated Adsorptive Polysulfone Mixed Matrix Membrane for Acetic Acid Separation

2023-06-01 , Pusphanathan K. , Hafiza Shukor , Shoparwe N.F. , Makhtar M.M.Z. , Zainuddin N.I. , Jullok N. , Siddiqui M.R. , Alam M. , Rafatullah M.

The ultrafiltration mixed matrix membrane (UF MMMs) process represents an applicable approach for the removal of diluted acetic acid at low concentrations, owing to the low pressures applied. The addition of efficient additives represents an approach to further improve membrane porosity and, subsequently, enhance acetic acid removal. This work demonstrates the incorporation of titanium dioxide (TiO2) and polyethylene glycol (PEG) as additives into polysulfone (PSf) polymer via the non-solvent-induced phase-inversion (NIPS) method to improve the performance of PSf MMMs performance. Eight PSf MMMs samples designated as M0 to M7, each with independent formulations, were prepared and investigated for their respective density, porosity, and degree of AA retention. Morphology analysis through scanning electron microscopy elucidated sample M7 (PSf/TiO2/PEG 6000) to have the highest density and porosity among all samples with concomitant highest AA retention at approximately 92.2%. The application of the concentration polarization method further supported this finding by the higher concentration of AA solute present on the surface of the membrane compared to that of AA feed for sample M7. Overall, this study successfully demonstrates the significance of TiO2 and PEG as high MW additives in improving PSf MMM performance.

Thumbnail Image
Publication

Green Renewable Energy: Microbial Fuel Cell Technology

2023-01-01 , Tuesday M. , Pusphanathan K. , Sobri M.F.M. , Makhtar M.M.Z. , Shoparwe N.F. , Hafiza Shukor

Microbial fuel cells (MFCs) are a bio-electrochemical system designed to generate energy by using electrons obtained from biological processes catalyzed by microorganisms. In MFCs, electrons are transmitted from the anode compartment (the negative terminal) to the cathode compartment (the positive terminal) via a conductive substance. Electrons are mixed with oxygen at the cathode, while protons diffuse via a proton exchange membrane. MFCs need continuous electron release from the anode and electron consumption from the cathode. Using microorganisms for effective conversion, MFC technology promises to produce clean energy from waste products produced by civilization. This technology, in contrast to renewable energy sources, recycles trash and energy created by our civilization and returns them to us, therefore reducing the adverse side effects of environmental degradation. This article examines the historical pattern of energy usage in Malaysia. In conjunction with that, this paper will review the principles of MFCs. Several designs of microbial fuel cells are utilized in this study. There has been variation in power density outcomes. Single-chamber, double-chamber, tubular, and flat-plate MFCs are examples of MFCs. Nonetheless, double-chamber and single-chamber MFCs are the focus of this paper. The substrate utilized affects the performance of MFCs; thus, several widely used substrates are also examined.

Thumbnail Image
Publication

The Effect of Different Pretreatment of Chicken Manure for Electricity Generation in Membrane-Less Microbial Fuel Cell

2022-08-01 , Mohd Azmi N. , Mohd Sabri M.N.I. , Tajarudin H.A. , Shoparwe N.F. , Makhtar M.M.Z. , Hafiza Shukor , Alam M. , Siddiqui M.R. , Rafatullah M.

The need for energy resources is growing all the time, which means that more fossil fuels are needed to provide them. People prefer to consume chicken as a source of protein, and this creates an abundance of waste. Thus, microbial fuel cells represent a new technological approach with the potential to generate electricity through the action of electrogenic bacteria toward chicken manure, while reducing the abundance of chicken manure. This study investigated the effect of different pretreatment (thermal, alkaline, and sonication pretreatment) of chicken manure to improve the performance of a membrane-less microbial fuel cell (ML-MFC). Statistical response surface methodology (RSM) through a central composite design (CCD) under a quadratic model was conducted for optimization of the ML-MFC performance focusing on the COD removal efficiency (R2 = 0.8917), biomass (R2 = 0.9101), and power density response (R2 = 0.8794). The study demonstrated that the highest COD removal (80.68%), biomass (7.8539 mg/L), and power density (220 mW/m2) were obtained when the pretreatment conditions were 140 °C, 20 kHz, and pH 10. The polarization curve of the best condition of ML-MFC was plotted to classify the behavior of the ML-MFC. The kinetic growth of Bacillus subtillis (BS) showed that, in treated chicken manure, the specific growth rate µ = 0.20 h−1 and doubling time Td = 3.43 h, whereas, in untreated chicken manure, µ = 0.11 h−1 and Td = 6.08.