Now showing 1 - 10 of 13
No Thumbnail Available
Publication

Development of multichannel artificial lipid-polymer membrane sensor for phytomedicine application

2006 , Mohd Noor Ahmad , Zhari Ismail , Oon–Sim Chew , AKM Islam , Ali Yeon Md Shakaff

Quality control of herbal medicines remain a challenging issue towards integrating phytomedicine into the primary health care system. As medicinal plants is a complicated system of mixtures, a rapid and cost-effective evaluation method to characterize the chemical fingerprint of the plant without performing laborious sample preparation procedure is reported. A novel research methodology based on an in-house fabricated multichannel sensor incorporating an array of artificial lipid-polymer membrane as a fingerprinting device for quality evaluation of a highly sought after herbal medicine in the Asean Region namely Eurycoma longifolia (Tongkat Ali). The sensor array is based on the principle of the bioelectronic tongue that mimics the human gustatory system through the incorporation of artificial lipid material as sensing element. The eight non-specific sensors have partially overlapping selectivity and cross-sensitivity towards the targeted analyte. Hence, electrical potential response represented by radar plot is used to characterize extracts from different parts of plant, age, batch-to-batch variation and mode of extraction of E. longifolia through the obtained potentiometric fingerprint profile. Classification model was also developed classifying various E. longifolia extracts with the aid of chemometric pattern recognition tools namely hierarchical cluster analysis (HCA) and principal component analysis (PCA). The sensor seems to be a promising analytical device for quality control based on potentiometric fingerprint analysis of phytomedicine.

No Thumbnail Available
Publication

Signal propagation analysis for low data rate wireless sensor network applications in sport grounds and on roads

2012 , David L. Ndzi , M. A. Mohd Arif , Ali Yeon Md Shakaff , Mohd Noor Ahmad , Azizi Harun , Latifah Munirah Kamarudin , Ammar Zakaria , Mohd F. Ramli , Mohammad Shahrazel Razalli

This paper presents results of a study to characterise wire- less point-to-point channel for wireless sensor networks applications in sport hard court arenas, grass fields and on roads. Antenna height and orientation effects on coverage are also studied and results show that for omni-directional patch antenna, node range is reduced by a factor of 2 when the antenna orientation is changed from vertical to horizontal. The maximum range for a wireless node on a hard court sport arena has been determined to be 70m for 0dBm transmission but this reduces to 60m on a road surface and to 50m on a grass field. For horizontal antenna orientation the range on the road is longer than on the sport court which shows that scattered signal components from the rougher road surface combine to extend the communication range. The channels investigated showed that packet error ratio (PER) is dominated by large-scale, rather than small-scale, channel fading with an abrupt transition from low PER to 100% PER. Results also show that large-scale received signal power can be modeled with a 2nd or der log-distance polynomial equation on the sport court and road, but a 1st order model is sufficient for the grassfield. Small-scale signal variations have been found to have a Rice distribution for signal to noise ratio levels greater than 10 dB but the Rice K-factor exhibits significant variations at short distances which can be attributed to the influence of strong ground reflections.

No Thumbnail Available
Publication

Classification of Agarwood oil using an Electronic Nose

2010 , Wahyu Hidayat , Ali Yeon Md Shakaff , Mohd Noor Ahmad , Abdul Hamid Adom

Presently, the quality assurance of agarwood oil is performed by sensory panels which has significant drawbacks in terms of objectivity and repeatability. In this paper, it is shown how an electronic nose (e-nose) may be successfully utilised for the classification of agarwood oil. Hierarchical Cluster Analysis (HCA) and Principal Component Analysis (PCA), were used to classify different types of oil. The HCA produced a dendrogram showing the separation of e-nose data into three different groups of oils. The PCA scatter plot revealed a distinct separation between the three groups. An Artificial Neural Network (ANN) was used for a better prediction of unknown samples.

No Thumbnail Available
Publication

Signal propagation in aquaculture environment for wireless sensor network applications

2012 , Azizi Harun , David Lorater Ndzi , Mohd F. Ramli , Ali Yeon Md Shakaff , Mohd Noor Ahmad , Latifah Munirah Kamarudin , Ammar Zakaria , Yanyan Yang

This paper presents results of signal propagation studies for wireless sensor network planning in aquaculture environment for water quality and changes in water characteristics monitoring. Some water pollutants can cause widespread damage to marine life within a very short time period and thus wireless sensor network reliability is more critical than in crop farming. This paper shows that network coverage models and assumptions over land do not readily apply in tropical aquaculture environment where high temperatures are experienced during the day. More specifically, due to high humidity caused by evaporation, network coverage at 15 cm antenna height is better than at 5 m antenna heights due to the presence of a superrefraction (ducting) layer. For a 69 m link, the difference between the signal strength measured over several days is more than 7 dBm except under anomaly conditions. In this environment, the two-ray model has been found to provide high accuracy for signal propagation over water where there are no objects in close proximity to the propagation path. However, with vegetation in close proximity, accurate signal variation predication must consider contributions from scattered and diffused components, taking into account frequency selective fading characteristics to represent the temporal and spatial signal variations.

No Thumbnail Available
Publication

Improved classification of orthosiphon stamineus by data fusion of electronic nose and tongue sensors

2010 , Ammar Zakaria , Ali Yeon Md Shakaff , Abdul Hamid Adom , Mohd Noor Ahmad , Masnan, Maz Jamilah , Abdul Hallis Abdul Aziz , Nazifah Ahmad Fikri , Abu Hassan Abdullah , Latifah Munirah Kamarudin

An improved classification of Orthosiphon stamineus using a data fusion technique is presented. Five different commercial sources along with freshly prepared samples were discriminated using an electronic nose (e-nose) and an electronic tongue (e-tongue). Samples from the different commercial brands were evaluated by the e-tongue and then followed by the e-nose. Applying Principal Component Analysis (PCA) separately on the respective e-tongue and e-nose data, only five distinct groups were projected. However, by employing a low level data fusion technique, six distinct groupings were achieved. Hence, this technique can enhance the ability of PCA to analyze the complex samples of Orthosiphon stamineus. Linear Discriminant Analysis (LDA) was then used to further validate and classify the samples. It was found that the LDA performance was also improved when the responses from the e-nose and e-tongue were fused together.

No Thumbnail Available
Publication

Labviewâ„¢ for Nutra-Biostrip in Herbal Quality Assessment

2004 , Mohd Noor Ahmad , Maxsim Yap Mee Sim , Mohd Kamal Mohamed Ramly Nil , Ali Yeon Md Shakaff , Chang Chew Cheen

In this work, we introduce the approach on the development of a stand-alone laptop based data acquisition of an array sensor system, namely Nutra-BioStrip coupled with pattern recognition algorithm for herbal quality assessment. The array sensor system control program, developed in Lab View 6. 1 programming languages allow data acquired from the array sensor to be analyzed by means of Principal Component Analysis (PCA) and displayed in the form of an interactive twodimensional cluster mapping with detail statistical analysis results for rapid and real-time herbal quality assessment.

No Thumbnail Available
Publication

A disposable sensor for assessing Artocarpus Heterophyllus L. (Jackfruit) maturity

2003 , Maxsim Sim , Mohd Noor Ahmad , Ali Yeon Md Shakaff , Chang Ju , Chang Cheen

The purpose of this work was an attempt to monitor the ripeness process and to investigate the different maturity stages of jackfruit by chemometric treatment of the data obtained from the disposable sensor. Response of the sensor strip fabricated using screen- printing technology was analyzed using Principal Component Analysis (PCA) and the classification model constructed by means of Canonical Discriminant Analysis (CDA) enable unknown maturity stages of jackfruit to be identified. Results generated from the combination of the two classification principles show the capability and the performance of the sensor strip towards jackfruit analysis.

No Thumbnail Available
Publication

Classification of agarwood oil using an electronic nose

2010 , Wahyu Hidayat , Ali Yeon Md Shakaff , Mohd Noor Ahmad , Abdul Hamid Adom

Presently, the quality assurance of agarwood oil is performed by sensory panels which has significant drawbacks in terms of objectivity and repeatability. In this paper, it is shown how an electronic nose (e-nose) may be successfully utilised for the classification of agarwood oil. Hierarchical Cluster Analysis (HCA) and Principal Component Analysis (PCA), were used to classify different types of oil. The HCA produced a dendrogram showing the separation of e-nose data into three different groups of oils. The PCA scatter plot revealed a distinct separation between the three groups. An Artificial Neural Network (ANN) was used for a better prediction of unknown samples.

No Thumbnail Available
Publication

Improved maturity and ripeness classifications of magnifera indica cv. Harumanis mangoes through sensor fusion of an electronic nose and acoustic sensor

2012 , Ammar Zakaria , Ali Yeon Md Shakaff , Masnan, Maz Jamilah , Fathinul Syahir Ahmad Sa'ad , Abdul Hamid Adom , Mohd Noor Ahmad , Mahmad Nor Jaafar , Abu Hassan Abdullah , Latifah Munirah Kamarudin

In recent years, there have been a number of reported studies on the use of non-destructive techniques to evaluate and determine mango maturity and ripeness levels. However, most of these reported works were conducted using single-modality sensing systems, either using an electronic nose, acoustics or other non-destructive measurements. This paper presents the work on the classification of mangoes (Magnifera Indica cv. Harumanis) maturity and ripeness levels using fusion of the data of an electronic nose and an acoustic sensor. Three groups of samples each from two different harvesting times (week 7 and week 8) were evaluated by the e-nose and then followed by the acoustic sensor. Principal Component Analysis (PCA) and Linear Discriminant Analysis (LDA) were able to discriminate the mango harvested at week 7 and week 8 based solely on the aroma and volatile gases released from the mangoes. However, when six different groups of different maturity and ripeness levels were combined in one classification analysis, both PCA and LDA were unable to discriminate the age difference of the Harumanis mangoes. Instead of six different groups, only four were observed using the LDA, while PCA showed only two distinct groups. By applying a low level data fusion technique on the e-nose and acoustic data, the classification for maturity and ripeness levels using LDA was improved. However, no significant improvement was observed using PCA with data fusion technique. Further work using a hybrid LDA-Competitive Learning Neural Network was performed to validate the fusion technique and classify the samples. It was found that the LDA-CLNN was also improved significantly when data fusion was applied.

No Thumbnail Available
Publication

Improved classification of Orthosiphon stamineus by data fusion of electronic nose and tongue sensors

2010-10-01 , Ammar Zakaria , Ali Yeon Md Shakaff , Abdul Hamid Adom , Mohd Noor Ahmad , Maz Jamilah Masnan , Abdul Hallis Abdul Aziz , Fikri N. , Abu Hassan Abdullah , Latifah Munirah Kamarudin

An improved classification of Orthosiphon stamineus using a data fusion technique is presented. Five different commercial sources along with freshly prepared samples were discriminated using an electronic nose (e-nose) and an electronic tongue (e-tongue). Samples from the different commercial brands were evaluated by the e-tongue and then followed by the e-nose. Applying Principal Component Analysis (PCA) separately on the respective e-tongue and e-nose data, only five distinct groups were projected. However, by employing a low level data fusion technique, six distinct groupings were achieved. Hence, this technique can enhance the ability of PCA to analyze the complex samples of Orthosiphon stamineus. Linear Discriminant Analysis (LDA) was then used to further validate and classify the samples. It was found that the LDA performance was also improved when the responses from the e-nose and e-tongue were fused together. © 2010 by the authors.