Now showing 1 - 2 of 2
  • Publication
    A study of embedded fuzzy logic to determine artificial stingless bee hive condition and honey volume
    ( 2024) ; ; ; ;
    Muhammad Ammar Asyraf Che Ali
    ;
    Mohd Al-Haffiz Saad
    ;
    Mohd Fauzi Abu Hassan
    Stingless Bee is particularly nutrient-dense in his honey. Therefore, numerous beekeepers for the Stingless Bee have begun this agricultural enterprise, particularly in Malaysia. However, beekeepers encounter challenges when caring for an excessively large stingless bee colony. Due to the risk of causing colony disruption, the beekeeper cannot always access the hives to monitor honey volume and hive condition. Consequently, the purpose of this paper is to aid beekeepers and prevent disruption to bee colonies by determining the condition of the hive and the quantity of honey using an embedded fuzzy logic system. Artificial hives have been created in order to easily measure the weight of a hive of stingless bees and to divide the honey compartment from the brood compartment in order to calculate the honey volume. Since the stingless bee designs its colony with honey on top and larvae on the bottom, honey volume can be determined by weighing the honey compartment using load cell and internal humidity using dht22. DHT22 is used for measuring the internal temperature and humidity, as previous papers have stated that the hive condition can be determined using the internal temperature and humidity. Morever, FLDa (Fuzzy Logic Designer app) by MATLAB was subsequently utilised to construct membership function, rules, fuzzification, and defuzzification. Then, the same input, membership function, and rules that used in FLDa will be implemented on the Nodemcu ESP8266 using eFLL (Embedded Fuzzy Logic Library). A comparison between the crisp output from FLDa and the crisp output from eFLL was conducted to determine whether eFLL is suitable for use in the NodeMCU ESP8266. As a consequence, the standard deviationand averaged percentage error of differences for hive condition, which is 0.22 and 0.17%, isless than the honey volume, which is 0.49 and 0.66%, because hive condition has a strict correlation with temperature. The hive condition will be rated bad (0% when the temperature is cold or hot state), but it will be rated good (100% when the temperature is normal state). As for honey volume, the majority of results correspond to the percentage of honey compartment weight, unless the humidity is dry state, which will cause the value to be cut in half. Finally, the fuzzy logic system is effectively implemented into an embedded system, making it easier for the beekeeper to monitor the hive condition and honey volume without interfering with the activity of stingless bees.
  • Publication
    A study of heat insulation methods for enhancing the internal temperature on artificial stingless bee hive
    ( 2024)
    Muhammad Ammar Asyraf Che Ali
    ;
    Bukhari Ilias
    ;
    ; ; ;
    Mohd Fauzi Abu Hassan
    The stingless bees have gained a large popularity among the beekeepers, particularly in tropical and subtropical regions such as the Americas, Africa, and Southeast Asia. This is because the honey of stingless bees has a distinct flavour and is highly valued for its medicinal qualities. Traditionally, stingless bee colonies constructed from wood logs are fragile and vulnerable to outside attacks. These predator or parasite attacks can cause Colony Collapse Disorder (CCD) if not eliminated. Thus, a PVC, 3D-printed PET-G, and acrylic artificial hive has been created to replace the old one. According to earlier research, stingless bees are especially susceptible to temperatures above 38°C. This paper's main goal is to discuss the results of studies on the best artificial hive insulation method. Over a month and a half, clay, wood powder, polystyrene, bubble aluminium foil, and a water- cooling system were tested as insulators. Results shows that artificial hives with bubble aluminium foil have the biggest average difference between internal and external temperatures (6.4°C) and are closest to traditional hives (8.6°C). The average temperature difference between the artificial hive's exterior and inside was 2.9°C without heat insulation. Clay-insulated artificial hives have the lowest standard deviation value for humidity at 0.46. Since temperature is vital to stingless bee survival, bubble aluminium foil container is the best insulation solution since it increases heat resistance more than other materials.