Now showing 1 - 5 of 5
No Thumbnail Available
Publication

Contribution of interfacial bonding towards geopolymers properties in geopolymers reinforced fibers: a review

2022 , Muhd Hafizuddin Yazid , Meor Ahmad Faris bin Meor Ahmad Tajudin , Mohd. Mustafa Al Bakri Abdullah , Marcin Nabiałek , Shayfull Zamree Abd. Rahim , Mohd Arif Anuar Mohd Salleh , Marwan Kheimi , Andrei Victor Sandu , Adam Rylski , Bartłomiej Jeż

There is a burgeoning interest in the development of geopolymers as sustainable construction materials and incombustible inorganic polymers. However, geopolymers show quasi-brittle behavior. To overcome this weakness, hundreds of researchers have focused on the development, characterization, and implementation of geopolymer-reinforced fibers for a wide range of applications for light geopolymers concrete. This paper discusses the rapidly developing geopolymer-reinforced fibers, focusing on material and geometrical properties, numerical simulation, and the effect of fibers on the geopolymers. In the section on the effect of fibers on the geopolymers, a comparison between single and hybrid fibers will show the compressive strength and toughness of each type of fiber. It is proposed that interfacial bonding between matrix and fibers is important to obtain better results, and interfacial bonding between matrix and fiber depends on the type of material surface contact area, such as being hydrophobic or hydrophilic, as well as the softness or roughness of the surface.

No Thumbnail Available
Publication

Contribution of interfacial bonding towards geopolymers properties in geopolymers reinforced fibers: A review

2022 , Muhd Hafizuddin Yazid , Meor Ahmad Faris bin Meor Ahmad Tajudin , Mohd. Mustafa Al Bakri Abdullah , Marcin Nabiałek , Shayfull Zamree Abd. Rahim , Mohd Arif Anuar Mohd Salleh , Marwan Kheimi , Andrei Victor Sandu , Adam Rylski , Bartłomiej Jeż

There is a burgeoning interest in the development of geopolymers as sustainable construction materials and incombustible inorganic polymers. However, geopolymers show quasi-brittle behavior. To overcome this weakness, hundreds of researchers have focused on the development, characterization, and implementation of geopolymer-reinforced fibers for a wide range of applications for light geopolymers concrete. This paper discusses the rapidly developing geopolymer-reinforced fibers, focusing on material and geometrical properties, numerical simulation, and the effect of fibers on the geopolymers. In the section on the effect of fibers on the geopolymers, a comparison between single and hybrid fibers will show the compressive strength and toughness of each type of fiber. It is proposed that interfacial bonding between matrix and fibers is important to obtain better results, and interfacial bonding between matrix and fiber depends on the type of material surface contact area, such as being hydrophobic or hydrophilic, as well as the softness or roughness of the surface.

No Thumbnail Available
Publication

Crumb rubber geopolymer mortar at elevated temperature exposure

2022 , Ahmad Azrem Azmi , Mohd. Mustafa Al Bakri Abdullah , Che Mohd Ruzaidi Ghazali , Romisuhani Ahmad , Ramadhansyah Putra Jaya , Shayfull Zamree Abd. Rahim , Mohammad A. Almadani , Wysłocki, Jerzy J. , Agata Śliwa , Andre Victor Sandu

Low calcium fly ash is used as the main material in the mixture and the crumb rubber was used in replacing fine aggregates in geopolymer mortar. Sodium hydroxide (NaOH) and sodium silicate (Na2SiO3) which were high alkaline solution were incorporated as the alkaline solution. The fly ash reacted with the alkaline solution forming alumino-silicate gel that binds the aggregate to produce a geopolymer mortar. The loading of crumb rubber in the fly ash based geopolymer mortar was set at 0%

No Thumbnail Available
Publication

Metakaolin/sludge based geopolymer adsorbent on high removal efficiency of Cu2+

2022 , Pilomeena Arokiasamy , Mohd. Mustafa Al Bakri Abdullah , Shayfull Zamree Abd. Rahim , Mohd Remy Rozainy Mohd Arif Zainol , Mohd Arif Anuar Mohd Salleh , Marwan Kheimi , Jitrin Chaiprapa , Andrei Victor Sandu , Petrica Vizureanu , Rafiza Abd Razak , Noorina Hidayu Jamil

Activated carbon (AC) has received a lot of interest from researchers for the removal of heavy metals from wastewater due to its abundant porous structure. However, it was found unable to meet the required adsorption capacity due to its amorphous structure which restricts the fundamental studies and structural optimization for improved removal performance. In addition, AC is not applicable in large scale wastewater treatment due its expensive synthesis and difficulty in regeneration. Thus, the researchers are paying more attention in synthesis of low cost geopolymer based adsorbent for heavy metal removal due its excellent immobilization effect. However, limited studies have focused on the synthesis of geopolymer based adsorbent for heavy metal adsorption by utilizing industrial sludge. Thus, the aim of this research was to develop metakaolin (MK) based geopolymer adsorbent with incorporation of two types of industrial sludge (S1 and S3) that could be employed as an adsorbent for removing copper (Cu2+) from aqueous solution through the adsorption process. The effects of varied solid to liquid ratio (S/L) on the synthesis of metakaolin/sludge based geopolymer adsorbent and the removal efficiency of Cu2+ by the synthesis adsorbent were studied. The raw materials and synthesized geopolymer were characterized by using x-ray fluorescence (XRF), x-ray diffraction (XRD), scanning electron microscope (SEM), fourier transform infrared spectroscopy (FTIR), Brunauer-Emmett-Teller (BET) and micro XRF. The concentration of Cu2+ before and after adsorption was determined by atomic absorption spectroscopy (AAS) and the removal efficiency was calculated. The experimental data indicated that the synthesized geopolymer at low S/L ratio has achieved the highest removal efficiency of Cu2+ about 99.62 % and 99.37 % at 25 %:75 % of MK/S1 and 25 %:75 % of MK/S3 respectively compared to pure MK based geopolymer with 98.56 %. The best S/

No Thumbnail Available
Publication

Metakaolin/sludge based geopolymer adsorbent on high removal efficiency of Cu2+

2022 , Pilomeena Arokiasamy , Mohd. Mustafa Al Bakri Abdullah , Shayfull Zamree Abd. Rahim , Mohd Remy Rozainy Mohd Arif Zainol , Mohd Arif Anuar Mohd Salleh , Marwan Kheimi , Andrei Victor Sandu , Petrica Vizureanu , Rafiza Abdul Razak , Noorina Hidayu Jamil

Activated carbon (AC) has received a lot of interest from researchers for the removal of heavy metals from wastewater due to its abundant porous structure. However, it was found unable to meet the required adsorption capacity due to its amorphous structure which restricts the fundamental studies and structural optimization for improved removal performance. In addition, AC is not applicable in large scale wastewater treatment due its expensive synthesis and difficulty in regeneration. Thus, the researchers are paying more attention in synthesis of low cost geopolymer based adsorbent for heavy metal removal due its excellent immobilization effect. However, limited studies have focused on the synthesis of geopolymer based adsorbent for heavy metal adsorption by utilizing industrial sludge. Thus, the aim of this research was to develop metakaolin (MK) based geopolymer adsorbent with incorporation of two types of industrial sludge (S1 and S3) that could be employed as an adsorbent for removing copper (Cu²⁺) from aqueous solution through the adsorption process. The effects of varied solid to liquid ratio (S/L) on the synthesis of metakaolin/sludge based geopolymer adsorbent and the removal efficiency of Cu²⁺ by the synthesis adsorbent were studied. The raw materials and synthesized geopolymer were characterized by using x-ray fluorescence (XRF), x-ray diffraction (XRD), scanning electron microscope (SEM), fourier transform infrared spectroscopy (FTIR), Brunauer-Emmett-Teller (BET) and micro XRF. The concentration of Cu²⁺ before and after adsorption was determined by atomic absorption spectroscopy (AAS) and the removal efficiency was calculated. The experimental data indicated that the synthesized geopolymer at low S/L ratio has achieved the highest removal efficiency of Cu²⁺ about 99.62% and 99.37% at 25%:75% of MK/S1 and 25%:75% of MK/S3 respectively compared to pure MK based geopolymer with 98.56%. The best S/L ratio for MK/S1 and MK/S3 is 0.6 at which the reaction between the alkaline activator and the aluminosilicate materials has improved and enhanced the geopolymerization process. Finally, this work clearly indicated that industrial sludge can be utilized in developing low-cost adsorbent with high removal efficiency