Now showing 1 - 2 of 2
No Thumbnail Available
Publication

An integrated of hydrogen fuel cell to distribution network system: Challenging and opportunity for D-STATCOM

2021-11-01 , Khaleel M.M. , Mohd Rafi Adzman , Samila Mat Zali

The electric power industry sector has become increasingly aware of how counterproduc-tive voltage sag affects distribution network systems (DNS). The voltage sag backfires disastrously at the demand load side and affects equipment in DNS. To settle the voltage sag issue, this paper achieved its primary purpose to mitigate the voltage sag based on integrating a hydrogen fuel cell (HFC) with the DNS using a distribution static synchronous compensator (D-STATCOM) system. Besides, this paper discusses the challenges and opportunities of D-STATCOM in DNS. In this paper, using HFC is well-designed, modeled, and simulated to mitigate the voltage sag in DNS with a positive impact on the environment and an immediate response to the issue of the injection of voltage. Furthermore, this modeling and controller are particularly suitable in terms of cost-effectiveness as well as reliability based on the adaptive network fuzzy inference system (ANFIS), fuzzy logic system (FLC), and proportional–integral (P-I). The effectiveness of the MATLAB simulation is confirmed by implementing the system and carrying out a DNS connection, obtaining efficiencies over 94.5% at three-phase fault for values of injection voltage in HFC D-STATCOM using a P-I controller. Moreover, the HFC D-STATCOM using FLC proved capable of supporting the network by 97.00%. The HFC D-STATCOM based ANFIS proved capable of supporting the network by 98.00% in the DNS.

No Thumbnail Available
Publication

A Review of Fuel Cell to Distribution Network Interface Using D-FACTS: Technical Challenges and Interconnection Trends

2021-09-01 , Khaleel M.M. , Mohd Rafi Adzman , Samila Mat Zali , Graisa M.M. , Ahmed A.A.

Today, the worldwide public interest in reducing power quality issues and greenhouse gas emissions is a key driver to study fuel cells (FCs) connected to distribution network systems (DNs) based on distributed flexible alternating-current transmission systems (D-FACTS). DNs will need to develop a better performance on Power Quality (PQ) while providing a more efficient energy technology. This study reviewed in-depth the interface of DN to FC systems. By focusing on the FC interface and the associated technical challenges, this review may help reduce the risk of DNs, minimizing the consumption of fossil fuels for power generation, lowering the emission of hazardous gases while dramatically increasing electrical power loads, improving PQ and stability. Besides, the study deliberated aspects of FC power technology with DNs interfacing based on D-FACTS. Specifically, the discussion encompassed the configuration structures of FC power technology and DNs connection based on D-FACTS, technical challenges of DNs, and its trends to determine the diagnosis, integration, and optimization for FC power technology.