Now showing 1 - 3 of 3
No Thumbnail Available
Publication

Adaptive PD Controller Performance for Direct Cooling of Thermoelectric Refrigerator

2020-12-18 , Mohd Saifizi Saidon , Mohd Rizal Manan , Baseemah Mat Jalaluddin , Junaidah Ali Mohd Jobran , Wan Azani Wan Mustafa , Roejhan Md Kawi , Lee T.W. , Mat Piah M.S. , Diana N.S.

Refrigerator is the key component to keep the medicine and biological sample in the hospital. The domestic refrigerator has the problem of larger size and heavier weight since to the compact system like condenser, compressor, evaporator and expansion valve are assemble and using in the refrigerator. This project focused on design of temperature control of the portable thermoelectric refrigerator for medical purpose. Thermoelectric refrigerator is using the direct cooling method through thermoelectric module. Thermoelectric refrigerator has several advantages such as smaller size, lighter and silent when operated. Since maintain a constant temperature for the storage of medical product is important, a specific refrigerator is needed to ensure the medicine is stored in desired temperature. This project is to design and develop an adaptive control system which can perform a good temperature control for the thermoelectric refrigerator. The second order model is applied to design adaptive Proportional-Derivative (PD) controller. The selected controller is the adaptive PD controller because the performance of response shows 0.42 C of less steady state error and 0.21 C of lower undershoot. The adaptive PD control system designed able to let the refrigerator operate in different operating condition without influence the performance of the refrigerator.

No Thumbnail Available
Publication

System Design for Early Detection of Explosive and Flammable Gas Leaks Using Mobile Robot in Confined Space

2021-12-01 , Muhammad Aizat Abu Bakar , Mohd Rizal Manan , Roejhan Md Kawi , Yunn, L. J.

The presence of explosive or flammable gases in confined space may contribute towards accidents that threaten the workers safety and industrial progress. Conventionally, the existing instrument for gas detection in confined space is manually carried by humans whereby the workers or competence person itself were exposed directly to the gases. This project is aim to develop a prototype system to detect the presence of gases leak where the robotic system replaces humans to carry gas sensors. Users only need to maneuver the robot using a mobile phone to monitor the specific area that may have an explosive or flammable gas leak which includes Liquefied Petroleum Gas (LPG) and methane gases. The sensors will detect if a change in the gas concentration has exceeded a safety limit and will activate the alarm as an alert signal. The readings of gases as input signals were sent wirelessly to the Personal Computer (PC) as a user device for monitoring purposes. This prototype is successfully developed, tested and calibrated using the samples of LPG gas, methane, smoke and environment temperature. The result proved that the developed system is able to detect an air sample using selected gas sensors and display the data in graph form with live monitoring. This will contribute significantly to acquiring a new and alternative method using the system for detecting the presence of gases in confined space application.

No Thumbnail Available
Publication

Development of Surveillance Hovercraft via Arduino

2024-02-01 , Muhammad Naufal Mansor , Syahrul Affandi Saidi , Wan Azani Wan Mustafa , Roejhan Md Kawi , Mohd Aminudin Jamlos , Talib N.A.A. , Mohd Zamri Hasan

The current research focuses on the development of hovercraft via Arduino. The vehicle is designed with bag skirt structure in order to reduce friction for smooth operation. Nowadays, there are a lot of natural disaster occur in everywhere especially flood. However, hovercraft is a vehicle that need a driver to drive which can cause a danger to the rescuer. Based on this problem, a wireless hovercraft is needed to develop. This study explains a hovercraft which is able to control the movement of the hovercraft from the surface. The design of the hovercraft was successfully made by using AutoCAD software. Furthermore, the material of the body was made from the insulation foam while the microprocessor is Arduino UNO R3. There are two brushless DC motors and one servo motor that used for this hovercraft. The first brushless DC motor which is located below the hovercraft is used as a hover operation, while the second motor located behind it is used to ensure the hovercraft move forward. In addition, the performance of the hovercraft was successfully tested on the 3 different surfaces. As a result, the highest performance is on the cement while the lowest is on the grass.