Options
Ras Izzati Ismail
Preferred name
Ras Izzati Ismail
Official Name
Ras Izzati, Ismail
Alternative Name
Ismail, Ras Izzati binti
Ismail, R. I.
Ismail, Ras Izzati
Main Affiliation
Scopus Author ID
57193309626
Researcher ID
AAI-8795-2021
Now showing
1 - 3 of 3
-
PublicationBuilding Stronger Biomass : How Particle Size Affects the Physical and Mechanical Properties of Khaya senegalensis Fuel PelletsBiomass has gained significant attention as a renewable energy source due to its potential to reduce dependency on fossil fuels and lower carbon emissions. Among various biomass-derived fuels, pelletized biomass offers enhanced energy density, improved combustion efficiency, and ease of handling and storage. Khaya senegalensis, a fast-growing tree that thrives in suboptimal conditions, requires regular pruning, leading to significant biomass waste. This study examines the influence of feedstock particle size on the mechanical properties of Khaya senegalensis fuel pellets. Biomass trimmings from Khaya tree branches were collected, processed into wood chips, and ground into five particle sizes (0.1, 0.3, 0.5, 1, and 2 mm) before pelletization. The pellets were produced under constant moisture content, pressure, temperature, and binder percentage. A one-factor-at-a-time (OFAT) approach was employed, with each process repeated three times to ensure consistency. The mechanical properties analyzed include unit density, durability, axial compressive strength, and diametral compressive strength. Experimental data are analyzed using analysis of variance (ANOVA) to examine correlations between feedstock particle sizes and mechanical properties. This study establishes that particle size plays a crucial role in determining the physical and mechanical properties of Khaya senegalensis wood pellets. The results indicate that finer particles (0.15 mm) contribute to higher unit density and durability, whereas coarser particles (1.00 mm) enhance compressive strength.
-
PublicationCracking the Code : Process Parameter Effects on Khaya senegalensis Energy Pellet Moisture ContentThe production of energy pellets from biomass sources holds immense potential for sustainable renewable energy generation. This study investigates the influence of key process parameters on the moisture content of energy pellets derived from Khaya senegalensis, a promising biomass feedstock in Malaysia. With a focus on unlocking the relationship between process variables and pellet moisture, a systematic experimental approach was adopted. The objective of this study is to investigate the effects of raw material moisture, feedstock particle size, compression pressure, and pelletization temperature on the manufactured biomass energy pellet's moisture content. By employing a comprehensive design of experiments and statistical analysis, the nuanced effects of these parameters are revealed on the moisture content of Khaya senegalensis energy pellets. The results illuminate the complex interplay between these process variables and the final moisture characteristics of the pellets. Understanding how these parameters impact moisture content is crucial for optimizing pellet quality, combustion efficiency, and storage stability. The study found a quadratic relationship between particle size, compression pressure, and pelletization temperature, indicating that larger particle sizes correlate with higher moisture content. Excessive pressure led to elevated levels while increasing temperature showed a decreasing trend. This research contributes valuable insights that advance the knowledge frontier of biomass pelletization, paving the way for enhanced utilization of Khaya senegalensis as a renewable energy resource.
4 18 -
PublicationCracking the code: process parameter effects on Khaya senegalensis energy pellet moisture content( 2023-12)The production of energy pellets from biomass sources holds immense potential for sustainable renewable energy generation. This study investigates the influence of key process parameters on the moisture content of energy pellets derived from Khaya senegalensis, a promising biomass feedstock in Malaysia. With a focus on unlocking the relationship between process variables and pellet moisture, a systematic experimental approach was adopted. The objective of this study is to investigate the effects of raw material moisture, feedstock particle size, compression pressure, and pelletization temperature on the manufactured biomass energy pellet's moisture content. By employing a comprehensive design of experiments and statistical analysis, the nuanced effects of these parameters are revealed on the moisture content of Khaya senegalensis energy pellets. The results illuminate the complex interplay between these process variables and the final moisture characteristics of the pellets. Understanding how these parameters impact moisture content is crucial for optimizing pellet quality, combustion efficiency, and storage stability. The study found a quadratic relationship between particle size, compression pressure, and pelletization temperature, indicating that larger particle sizes correlate with higher moisture content. Excessive pressure led to elevated levels while increasing temperature showed a decreasing trend. This research contributes valuable insights that advance the knowledge frontier of biomass pelletization, paving the way for enhanced utilization of Khaya senegalensis as a renewable energy resource.
1 18