Now showing 1 - 2 of 2
No Thumbnail Available
Publication

Mechanical performance, microstructure, and porosity evolution of fly ash geopolymer after ten years of curing age

2023 , Ikmal Hakem A. Aziz , Mohd. Mustafa Al Bakri Abdullah , Rafiza Abd Razak , Zarina Yahya , Mohd Arif Anuar Mohd Salleh , Jitrin Chaiprapa , Catleya Rojviriya , Petrica Vizureanu , Andrei Victor Sandu , Muhammad Faheem Mohd. Tahir , Alida Abdullah , Liyana Jamaludin

This paper elucidates the mechanical performance, microstructure, and porosity evolution of fly ash geopolymer after 10 years of curing age. Given their wide range of applications, understanding the microstructure of geopolymers is critical for their long-term use. The outcome of fly ash geopolymer on mechanical performance and microstructural characteristics was compared between 28 days of curing (FA28D) and after 10 years of curing age (FA10Y) at similar mixing designs. The results of this work reveal that the FA10Y has a beneficial effect on strength development and denser microstructure compared to FA28D. The total porosity of FA10Y was also lower than FA28D due to the anorthite formation resulting in the compacted matrix. After 10 years of curing age, the 3D pore distribution showed a considerable decrease in the range of 5–30 µm with the formation of isolated and intergranular holes.

No Thumbnail Available
Publication

Influence of salinity of mixing water towards physical and mechanical properties of high strength concrete

2023 , Rafiza Abd Razak , Khai Yen Ng , Mohd. Mustafa Al Bakri Abdullah , Zarina Yahya , M. Nabiałek , K. Muthusamy , W.A.W. Jusoh , B. Jeż , R. Mohamed

Dramatic population and economic growth result in increasing demand for concrete infrastructure, which leads to an increment of freshwater demand and a reduction of freshwater resources. However, freshwater is a finite resource, which means that freshwater will be used up someday in the future when freshwater demand keeps increasing while freshwater resources are limited. Therefore, replacing freshwater with seawater in concrete blending seems potentially beneficial for maintaining the freshwater resources as well as advantageous alternatives to the construction work near the sea. There have been few experimental research on the effect of blending water salt content on the mechanical and physical characteristics of concrete, particularly high-strength concrete. Therefore, a research study on the influence of salt concentration of blending water on the physical and mechanical properties of high-strength concrete is necessary. This study covered the blending water salinity, which varied from 17.5 g/L to 52.5 g/L and was determined on the physical and mechanical properties, including workability, density, compressive strength, and flexural strength. The test results indicate that the use of sea salt in blending water had a slight negative influence on both the workability and the density of high strength concrete. It also indicates that the use of sea salt in blending water had a positive influence on both the compressive strength and the flexural strength of high-strength concrete in an earlystage.