Options
Muhammad Mahyiddin Ramli
Preferred name
Muhammad Mahyiddin Ramli
Official Name
Muhammad Mahyiddin, Ramli
Alternative Name
Ramli, Muhammad Mahyiddin
Ramli, M. Muhammad
Ramli, M. M.
Ramli, M.
Ramli, Muhammad Mahyidin
Mahyiddin Ramli, Mohd
Ramli, Muhammad M.
Main Affiliation
Scopus Author ID
55891565000
Researcher ID
AAH-1285-2021
Now showing
1 - 10 of 26
-
PublicationRemazol orange dye sensitized solar cell( 2017-01-03)
;Siti Salwa Mat Isa ;Muda M.R. ;Nur M. SelamatNur Asyikin Mohd AnharWater based Remazol Orange was utilized as the dye sensitizer for dye sensitized solar cell. The annealing temperature of TiO2 working electrode was set at 450 °C. The performance of the device was investigated between dye concentrations of 0.25 mM and 2.5 mM at three different immersion times (3, 12 and 24 hours). The adsorption peak of the dye sensitizer was evaluated using UV-Vis-Nir and the device performance was tested using solar cell simulator. The results show that the performance was increased at higher dye concentration and longer immersion time. The best device performance was obtained at 0.2% for dye concentration of 2.5 mM immersed at 24 hours. -
PublicationSurface Modification of GO/TiO2 Thin Film by Sodium Dodecyl Sulphate for Photocatalytic Applications( 2024-01-01)
;Vizureanu P. ;Sandu A.V.Mohamad N.Photocatalyst material titanium dioxide (TiO2) and graphene oxide (GO) were used to improve the self-cleaning properties of thin films. The sol–gel spin-coating method was successfully used to synthesize GO/TiO2 thin films. Surface modification was applied to optimize the self-cleaning capabilities by adding several concentrations of sodium dodecyl sulfate (SDS) (0.1 w/v%, 0.2 w/v%, 0.3 w/v%, 0.4 w/v%, and 0.5 w/v%) to the parent solution. The synthesized thin films were investigated using scanning electron microscopy (SEM), atomic force microscopy (AFM), X-ray diffraction, UV-visible spectroscopy, water contact angle analysis, and photocatalytic analysis. The AFM and SEM images revealed that as the SDS amount increased, the particles became less agglomerated, and the roughness of the surface reduced from 2.54 × 102 nm to 0.83 × 102 nm. The wettability analysis showed that when SDS increased to 0.4 w/v%, the water contact angle dropped to 15.30°, implying that the thin film exhibits hydrophilic qualities. A decrease in the GO/TiO2 band gap was obtained linearly with the increase in SDS addition from 3.17 eV to 2.75 eV. Finally, the improvement of the surface coating and reduction of the band gap enhanced the photocatalytic activity, which degraded 78.97% of methylene blue, which was obtained by 0.4SDS.2 -
PublicationEffect of Ni on the suppression of sn whisker formation in Sn-0.7Cu solder joint( 2021)
;Andrei Victor Sandu ;Noor Zaimah Mohd MokhtarJitrin ChaiprapaThe evolution of internal compressive stress from the intermetallic compound (IMC) Cu6Sn5 growth is commonly acknowledged as the key inducement initiating the nucleation and growth of tin (Sn) whisker. This study investigates the effect of Sn-0.7Cu-0.05Ni on the nucleation and growth of Sn whisker under continuous mechanical stress induced. The Sn-0.7Cu-0.05Ni solder joint has a noticeable effect of suppression by diminishing the susceptibility of nucleation and growth of Sn whisker. By using a synchrotron micro X-ray fluorescence (µ-XRF) spectroscopy, it was found that a small amount of Ni alters the microstructure of Cu6Sn5 to form a (Cu,Ni)6Sn5 intermetallic layer. The morphology structure of the (Cu,Ni)6Sn5 interfacial intermetallic layer and Sn whisker growth were investigated by scanning electron microscope (SEM) in secondary and backscattered electron imaging mode, which showed that there is a strong correlation between the formation of Sn whisker and the composition of solder alloy. The thickness of the (Cu,Ni)6Sn5 IMC interfacial layer was relatively thinner and more refined, with a continuous fine scallop-shaped IMC interfacial layer, and consequently enhanced a greater incubation period for the nucleation and growth of the Sn whisker. These verification outcomes proposes a scientifically foundation to mitigate Sn whisker growth in lead-free solder joint. -
PublicationInterdigitated electrodes as impedance and capacitance biosensors: A review( 2017-09-26)
;Mazlan N. ;Isa S. ;Talip L. ;Nuaim Siddiqi DanialInterdigitated electrodes (IDEs) are made of two individually addressable interdigitated comb-like electrode structures. IDEs are one of the most favored transducers, widely utilized in technological applications especially in the field of biological and chemical sensors due to their inexpensive, ease of fabrication process and high sensitivity. In order to detect and analyze a biochemical molecule or analyte, the impedance and capacitance signal need to be obtained. This paper investigates the working principle and influencer of the impedance and capacitance biosensors. The impedance biosensor depends on the resistance and capacitance while the capacitance biosensor influenced by the dielectric permittivity. However, the geometry and structures of the interdigitated electrodes affect both impedance and capacitance biosensor. The details have been discussed in this paper. -
PublicationGeopolymer Ceramic as Piezoelectric Materials: A Review( 2020-07-09)
;Ahmad R. ;Victor Sandhu A.Waried Wazien Ahmad ZailaniDiverse application for geopolymer so called inorganic polymer have been expanded as potential to continue growing at a realistic rate where the properties, processing tolerance and economical are comparable with the existing materials. An aluminosilicate inorganic polymer can be produced at low temperature under highly alkali conditions from a solid aluminosilicate and an alkali silicate solution. The conversion of amorphous to semi-crystalline behaviour of geopolymer into crystalline phases upon heating make the method be an alternate way in producing ceramic materials. For another application related to high temperature packaging and enclosure of electronical devices, piezoelectric behavior turn out to be important properties to the geopolymer ceramic materials. This paper summarize the review on the important research findings on the basic geopolymer systems, current knowledge of geopolymer ceramic, and outline potential piezoelectric effect on ceramic materials. -
PublicationMesoporous Structure of Doped and Undoped PEG on Ag/TiO2 Thin Film( 2019-08-14)
;Abdul Razak K. ;Azani A.Sepeai S.In this reaserch, photocatalyst silver titanium dioxide was doped and modified by Polyethylene Glycol (PEG). The purpose of the present study was to analyse the synthesized Ag/TiO2 thin film doped and undoped PEG. Ag/TiO2 thin films on silicon wafer have been prepared by sol-gel spin coating. The samples were characterized by Grazing Incidence X-ray diffraction (GIXRD), Field Emission Scanning Electron Microscopy (FESEM) and Atomic Force Microscope (AFM). The doped and undoped PEG Ag/TiO2 thin films showed a mesoporous TiO2 matrix which includes TiO2 crystallites of 10-20 nm in size and small Ag nanoparticles (white spots) with various sizes ranging from 10 to 30 nm. However, doped PEG Ag/TiO2 thin film showed the Ag nanoparticles became agglomerates but still remained roughly uniform on the surface. -
PublicationLinear modelling of novel InGaAs/InAlAs/InP pHEMT for low noise applications( 2017-01-03)
;En A.Y. ;Siti Salwa Mat SitiMissous M.Linear modelling of novel InGaAs/InAlAs/InP pHEMT for low noise applications is substantial to the future transistors that will operate in high speed and low noise conditions. The novel pHEMT is constructed by sandwiching two different materials together with different lattice constants, for instance InGaAs and InAlAs in order to form a heterojunction in between. However, InP is only utilised to be the substrate base of pHEMT. In the modelling process, extrinsic and intrinsic parameters need to be extracted. Briefly, a high accuracy transistor modelling enables designers to predict the real output of a circuit before it can be fabricated onto an actual chip. -
PublicationSmall signal modelling of novel InGaAs/InAlAs/InP pHEMT for high frequency applications( 2017-01-03)
;Xian O.J. ;Siti Salwa Mat IsaMissous M.HEMT is a GaAs based field effect transistor that retains higher cutoff frequency compared to silicon based transistors. Alternatively, pHEMT enhance the performance of the HEMT in term of leakage, current conduction and the cutoff frequency of the device. The heterostructure of pHEMT improve the performance two-dimension electron gas (2DEG) in the channel layer. With these, pHEMT is believed could be perfectly used in the most of the high frequency application. In this project, small signal models of InGaAs/InAlAs/InP pHEMT with 7 extrinsic parameters and 8 intrinsic parameters are modelled. -
PublicationSingle wall carbon nanotubes dispersion study of different dye molecules and chitosan( 2017-09-26)
;Siti Salwa Mat IsaCarbon Nanotubes (CNTs) is known for their hydrophobicity ability. However, this ability can become the bottleneck for the application of CNTs where a highly dispersion of materials are needed. In this project, different dispersing agents were investigated namely dye molecules and chitosan. Three different dyes are studied with different concentration, including 0.05 % of chitosan. The dispersion quality is determined by examining through UV-Vis-NIR. The best dispersion quality investigated here is when the concentration of dye molecules is higher, which is around 2.5 mM. -
PublicationProduction of low temperature synthetic graphite( 2023-04)
;Anis Syafiqa Rosman ;Ranjitha NavalanNurul Huda OsmanSynthetic graphite is a material consisting of graphitic carbon which has been obtained by graphitizing a non-graphitic carbon. The growth in demand, particularly in customizing properties for certain usage has brought about research on viable alternative, low-cost, and environmentally pleasant synthetic graphite production. Biomass wastes are amongst appealing carbon precursors which have been broadly checked out as replacement carbon for graphite production. This research aimed to synthesize synthetic graphite from oil palm trunks at low temperatures (500 °C, 400 °C and 300 °C) under controlled conditions to determine the physical properties and properties of the graphite obtained. After the heat treatment process, the obtained samples were then characterized by using XRD, SEM and RAMAN characterizations. Based on SEM and RAMAN characterization, it can be seen that graphite that undergoes a 500 °C pyrolysis process shows the best results compare to graphite that undergoes a pyrolysis process at the temperatures of 300 °C and 400 °C. The graphite flakes and the peaks obtained for 500 °C graphite are obviously present. For XRD characterization, the best samples at 500 °C were chosen to be characterized. From the results, the sample shows slight behavior imitating the commercialized graphite. Hence, from the characterizations of the samples, it can be concluded that the best synthetic graphite produced was from the oil palm trunks heated at 500 ° C2 14