Options
Mohamad Shukor Abdul Rahim
Preferred name
Mohamad Shukor Abdul Rahim
Official Name
Mohamad Shukor , Abdul Rahim
Alternative Name
Abd Rahim, Mohd Shukor
Rahim, M. S.Abdul
Rahim, Mohd Shukor Abdul
Main Affiliation
Scopus Author ID
57216323171
Researcher ID
GPS-6148-2022
Now showing
1 - 7 of 7
-
PublicationReview of Control Strategies for Improving the Photovoltaic Electrical Efficiency by Hybrid Active Cooling( 2024-06-01)
;Edaris Z.L. ;Ali M.H.Photovoltaic (PV) cooling systems are used widely in order to increase the PV efficiency. Most review paper was published for the role, design and cooling techniques of PV applications, there is a lack of collected and organised information regarding the latest and the newest updates on control strategies for PV cooling control systems. Hence, this paper presents a comprehensive review of PV cooling control strategies discussing the latest research works during the years from 2010 to 2022. PV/T hybrid cooling types are highlighted, followed by the main focus of this paper an extensive review of the control schemes for diverse types of PV cooling systems that have been carried out. This paper summarises most of the related work and also pays a special focus on research trends regarding the control of PV cooling systems that have been previously published in the literature. This review paper will be helpful to new researchers when identifying research directions for this particular area of interest. -
PublicationModeling, experimental investigation and real-time control of active water cooling system for photovoltaic module( 2024-01-01)
;Hasanuzzaman M.Photovoltaic (PV) cells are integral in harnessing solar energy, yet their performance is hindered by excessive heat generation, impacting efficiency and sustainability. Addressing the challenge of efficiency loss in photovoltaic (PV) cells due to overheating, this study focuses on optimizing active water cooling control for PV modules. The aim is to develop a dynamic, sustainable model and integrate a PID controller tuned by Sine Cosine Algorithm (SCA), targeting optimal operating temperatures. This study introduces a dynamic model and a closed-loop control system to manage PV cell temperature, investigating the correlation between water flow and temperature regulation. Experimental data is gathered using a pseudo-random binary sequence (PRBS) as an excitation signal, forming the foundation of an Auto Regressive eXogenous (ARX) model. The closed-loop system incorporates a PID controller and tuned using the Sine Cosine Algorithm (SCA) to optimize performance. The resulting model is rigorously validated through experimental investigation, demonstrating its precision in capturing the system’s dynamics. Moreover, the implementation of a controller-based cooling system substantiates the model’s practical efficacy. The research demonstrates significant improvements when implementing a controller-based water-cooling system for photovoltaic (PV) modules. Compared to the baseline scenario without cooling, the system achieves a 34.5% reduction in average PV temperature (from 59.2°C to 38.9°C) and a 9.46% increase in average power output (from 196.7W to 215.3W). Moreover, this system utilizes only 248.8 liters of water, marking a substantial 64% decrease in water consumption compared to traditional free-flow cooling methods, which use 790.9 liters. The research demonstrates that the controller-based cooling approach is a sustainable option, delivering power output comparable to the free-flow method, yet significantly lowering water consumption. This research signifies a turning point for sustainability, offering an efficient and water-conscious approach for enhancing PV system performance, a crucial step toward a greener and more environmentally responsible energy future. -
PublicationCritical Review: Adaptive Pole Assignment PID Controller on DC-DC Converters( 2020-03-20)
;Husna A.W.N.Esa S.M.Recently, control usages of DC-DC converters have been widely investigated particularly in renewable energy; as the primary sources. Discovering the most appropriate control method to be applied in DC-DC converter topologies is the most significant interest of research and development in this field. Thus, the review is carried out in selecting a control method that capable to improve the functioning of the converters as well as reducing the effect of disturbances and load variances. -
PublicationPower Generation Improvement using Active Water Cooling for Photovoltaic (PV) Panel( 2021-01-01)
;Nalini C. ;Edaris Z.L.B.Hasanuzzaman M.Photovoltaic (PV) cooling systems are commonly used to improve photovoltaic panels power generation and efficiency. Photovoltaic (PV) panels require irradiance to generate power, although increasing irradiance is often correlated with increasing temperature. These rapid increases of temperature in photovoltaic (PV) panels severely affect the power conversion operation. With a proper cooling process on its surface, a solar photovoltaic (PV) system can operate at a higher efficiency. This research aims to study the power improvement of active water-cooling on photovoltaic (PV) panels. A fixed minimum water flow of 5.80 l/min is sprayed onto the panel's front surface to reduce the temperature. The sprayed water created a thin water film and managed to reduce the temperature. Other than that, there is also reference photovoltaic (PV) panel, which is a panel without any cooling system. The outputs compared are the module temperature, maximum output power, open circuit voltage, and short circuit current. As the irradiance starts increasing, the panel temperature also begins to spike. However, with active water cooling, the temperature was able to be reduced by 37.67% during the day's hottest temperature. This reduction of temperature creates power improvement to the cooled panel up to 253W, compared to the reference panel output of only 223W. During the overheating of a photovoltaic (PV) panel, the open circuit voltage was found to be the most affected. This increase in power with active water cooling can potentially have a massive impact on large-scale photovoltaic (PV) panel installations. -
PublicationFundamental study on the impacts of water-cooling and accumulated dust on photovoltaic module performance( 2022-12-01)
;Alwesabi F.A.A. ;Aziz A.S. ;Satterlee C. ;Ayob S.M.Sutikno T.Photovoltaic (PV) modules have been becoming well-spread recently as alternative clean energy sources to traditional energy sources due to their efficiency and sustainability benefits. This paper applied various water temperatures and artificial dust levels to a couple of monocrystalline PV modules under outdoor conditions to observe their performance. Two different IV tracers were connected separately to each module for comparison purposes. Two temperature sensors were installed at the back of the panels to observe the cell temperatures. Besides, a temperature sensor was specified for ambient readings. Water flowed through an adjustable water-flow sensor to cool the overheated PV module using specific mass flow rates. The results indicate that the efficiency of the PV module starts to reduce when the panel temperature begins to surpass 49.1°C. It was discovered that cooling the PV module increases its efficiency from 0.97 percent at the lowest rate to 4.70 percent at the highest rate. Furthermore, accumulated dust on the PV module top surface can be reduced up to 3-fold under 110 g/m2 of dust, and up to 29.30% under 10 g/m2 of 100% of its generated energy. Improvement techniques and future work on PV module performance are also discussed. -
PublicationTechnologies of solar tracking systems: A review( 2020-03-20)
;Amelia A.R.Solar energy is abundantly in nature and sustainable energy resources around the world. The main challenge with the solar field is less amount of sun energy captured by using photovoltaic (PV) systems. The great performance of the PV systems can be achieved if the panel is kept perpendicular to the direction of the radiations of sun. Hence, solar tracker system is the method to keep the optimum position of the PV panel for always perpendicular to the solar radiation. This paper aims to review on various technologies of solar tracking to determine the best PV panel orientation. The various types of technologies of solar tracking system have been discussed which includes passive solar tracker, active solar tracker and chronological tracker system. The movement degrees of solar tracking system also have been addressed which consisting single-axis solar tracking system and dual-axis solar tracking system. This paper is also overviews the tracking techniques performance, construction, performance, advantages, and disadvantages of existing solar tracking system. The limitations of solar tracking systems are also highlighted for future action improvement. Through this research studies, the most favorable solar tracking system was identified as active solar tracker with the dual axis rotation. -
PublicationDetermination of soft starter firing angle performance to mitigate motor high inrush current using current limitation method( 2020-03-20)
;Azizan, Muhammad MokhzainiMd Esa, Suhaireza BintiInrush current in the simplest form can also be determined as current drawn by an induction motor during startup period. This starting current will shoot up about 5 to 7 times the rated current. However, this high current usually occur in the starting period only. To overcome this, several techniques can be implemented to reduce the high current. The configuration of soft starter just involving some power semiconductor device act as switches that control the current flow from power source to the motor. The switches is in form of thyristor and are connected back-to-back because the system conduct in AC system. The current output can be controlled by varying the firing angle. This changing of firing angle will be managed by a firing angle control circuit. This soft starter was connected between power source and motor. The thyristors that built in soft starter act like a gate to control the voltage applied to the motor. The firing angle for current limitation soft starter was changed to several angle and what can be concluded that the high current succeed to mitigate with increasing the firing angle. The current drawn for this type of starter is steadily constant. The lower current during starting took longer time for motor to reach its rated speed. This type of starter successfully reduces inrush current about 42 percent. Finally what can be concluded is that the soft starter was proven to mitigate inrush current. Type of soft starter that going to implement is depending on the application of motor. When the application need to control the torque is more suitable to use current limitation soft starter because the current is steadily control.