Options
Norhayati Sabani
Preferred name
Norhayati Sabani
Official Name
Norhayati, Sabani
Alternative Name
Sabani, N.
Sabani, Norhayati
Sabani, Norhayati Bt
Norhayati, S.
Sabani, Norhayati Binti
Main Affiliation
Scopus Author ID
54785178400
Researcher ID
AAB-8243-2022
Now showing
1 - 10 of 36
-
PublicationThe structural and electrical characterization of PEDOT:PSS/MEH-PPV doped with PEIE OLED fabricated using spin coating technique( 2020-01-08)
;Juhari N. ;Shukri N.I.A.This paper investigates the performance of the uniformity and absorption spectrum of MEHPPV+PEIE thin films also the electrical properties for configuration of ITO/PEDOT: PSS/MEH+PEIE/Al. The sample used 0.5 wt % of PEDOT: PSS solution while 5 mgml-1 concentration of MEH-PPV solution was doped with four different concentrations of PEIE with values of 0.1 wt%, 0.3 wt%, 0.5 wt% and 0.7 wt% respectively. The untreated PEDOT: PSS and MEH-PPV+PEIE was deposited using spin coating technique at a fixed spun speed of 3000 rpm to obtain smooth surface roughness thin film. The root mean square (RMS) value, absorption spectrum and current density (A/cm-2) of the PEDOT: PSS and MEH-PPV+PEIE films were analyzed using Atomic Force Microscope (AFM), UV-Visible (UV-Vis) Spectrophotometer and Semiconductor Parametric Analyzer (SPA), respectively. The surface roughness of the films were linearly increased when the dopant concentration increased with the maximum RMS value of ∼4.74 nm. Besides, absorption peak wavelength also was red-shifted from 500 nm to 551 nm under an influence of PEIE dopant concentrations. However, the turn on voltage gives no significant trend when dopant concentration was increased but the emission of the light was emitted when the voltage was below 8 V. Among four different dopant concentrations of MEH-PPV+PEIE, the brighter light emission was observed at 0.3 wt% of PEIE. Apparently, the concentration of dopant solution gives a significant contribution to the performance of OLED in terms of structural, optical and electrical properties. -
PublicationDyes extracted from Hibiscus Sabdariffa flower and Pandannus amaryllifolius leaf as natural dye sensitizer by using an alcohol-based solvent( 2021-03-01)
;Rosli N. ;Shahimin M.M. ;Shaari S. ;Ahmad M.F.Zakaria N.The efficiency improvement of Dye sensitized solar cells (DSSC), the fabrication of DSSC by using metal-free organic natural dyes with a different type of solvents for the extraction of dye sensitizer was investigated. The metal-free organic Dye which comes from anthocyanin and chlorophyll dyes were dissolved by using different solvents, which are ethanol, methanol and mixture of ethanol and methanol. Anthocyanin dye was extracted from the petals of Hibiscus Sabdariffa (Roselle), and chlorophyll dye was extracted from the epidermal leaves of Pandannus amaryllifolius (Pandan). The purpose of using different solvents from alcohol-based was to determine which solvents that produce the highest effect in term of efficiency for DSSC. To confirm which solvents that produce the highest efficiency to the DSSC, the photovoltaic measurement was conducted, and the data was collected. From the photovoltaic analysis, the J-V characteristics under illumination are recorded. The sample that used anthocyanin dye extracted from Roselle flower diluted with methanol solvent gave the highest efficiency which is 0.0005% with the following parameters-Voc = 0.419 V, Jsc = 0.0057 mA/cm2 and FF = 0.24. Meanwhile, the sample that used chlorophyll dye extracted from Pandan leaves diluted with a mix of ethanol and methanol solvents gave the highest efficiency which is 0.00014% with the following parameters-Voc = 0.347 V, Jsc = 0.0016 mA/cm2 and FF = 0.25. -
PublicationOptimization of MEH-PPV based single and double-layer TOLED structure by numerical simulation( 2021-12)
;T. KersenanA.F.A RahimIn this work, we simulated and characterized Poly [2-methoxy-5-(2’-ethylhexyloxy)-1, 4-phenylene vinylene] (MEH-PPV) based single and double-layer TOLED by using Silvaco ATLAS device simulator to achieve prominent values of electrical and optical properties of the device. MEH-PPV were used as the emitting layer (EML) in the single-layer, while addition of Poly [(3,4-ethylene dioxythiophene)-poly(styrene sulfonate)] (PEDOT-PSS) as the electron transport layer (ETL) were conducted in double-layer TOLED simulation. The EML and ETL thickness in both structures were varied between 10 – 150 nm, respectively, to observe and understand the underlying physics of the relation in the layer thickness to the electrical and optical characteristics. Furthermore, variation of the EML/ETL thickness ratio from 1:1 to 5:1 (with thickness in between 10 to 50 nm) had also been conducted. From this work, it is understood that the thickness of the EML layer plays the most important role in TOLED, and by balancing the carrier injections and recombination rate in appropriate EML/ETL thickness ratio, the electrical and optical properties can be improved. By optimizing the EML/ETL thickness and thickness ratio, an optimal forward current of 1.41 mA and luminescent power of 1.93e-18 W/μm has been achieved with both MEH-PPV and PEDOT-PSS layer thickness of 10 nm (1:1 ratio), respectively. The results from this work will assist the improvement of TOLED device to be implemented widely in low power and transparent electronic appliances. -
PublicationA Study on Electrical Performance of SiC-based Self-switching Diode (SSD) as a High Voltage High Power Device( 2023-12-01)
;Sha’ari N.Z.A.A. ;Ahmad M.F.The Self-switching Diodes (SSDs) have been primarily researched and used in low-power device applications for RF detection and harvesting applications. In this paper, we explore the potential of SSDs in high-voltage applications with the usage of Silicon Carbide (SiC) as substrate materials which offers improved efficiency and reduced energy consumption. Optimization in terms of the variation in the interface charges, metal work function, and doping concentration values has been performed by means of a 2D TCAD device simulator. The results showed that the SSD can block up to 600 V of voltage with an optimum interface charge value of 1013 cm-2, making them suitable for higher voltage applications. Furthermore, it also found that the work function of the metal contact affected the forward voltage value, impacting the current flow in the device. Variation in doping concentrations also resulted in higher breakdown voltages and significantly increased forward current, leading to an increased power rating of 27 kW. In conclusion, the usage of 4H-SiC-based SSDs shows a usable potential for high-voltage applications with optimized parameters. The results from this research can facilitate the implementation of SSD in the development of high-power semiconductor devices for various industrial applications. -
PublicationLow-cost tilt monitoring system for spin coater calibration( 2024-02-08)
;King C.Y.Amin M.R.R.M.The spin coating process became the most widely used technique in the fabrication industry for thin film coating on a substrate by centrifugal force. Unfortunately, frequent usage of spin coater might induce a tilted surface of the chuck (i.e. the sample holder). A tilted chuck might induce inhomogeneity of the coating layer. Among the machine's calibration techniques, nullifying the tilt before the spin coating process is the most important step. However, to our knowledge, none of the spin coaters was introduced with the chuck's tilt monitoring during the spin coating process. Thus, investigating the discrete condition during the spin coating process is necessary. In this work, the tilt monitoring system for the spin coater was implemented based on an Arduino Uno microcontroller and distance sensor. A spin coater has been implemented to test the tilt surface monitoring during spinning ranges from 350rpm to 1000rpm. The measurement was done under two conditions: flat (0.00 degrees) and tilted (5.71 degrees). The setup was able to measure up to 0.01 degrees of the tilt. -
PublicationOptimization of MEH-PPV Based Single and Double-Layer TOLED Structure by Numerical Simulation( 2021-01-01)
;Kersenan T. ;Zakaria N.F. ;Shaari S. ;Juhari N.Rahim A.F.A.In this work, we simulated and characterized Poly [2-methoxy-5-(2’-ethylhexyloxy)-1, 4-phenylene vinylene] (MEH-PPV) based single and double-layer TOLED by using Silvaco ATLAS device simulator to achieve prominent values of electrical and optical properties of the device. MEH-PPV were used as the emitting layer (EML) in the single-layer, while addition of Poly [(3,4-ethylene dioxythiophene)-poly(styrene sulfonate)] (PEDOT-PSS) as the electron transport layer (ETL) were conducted in double-layer TOLED simulation. The EML and ETL thickness in both structures were varied between 10 – 150 nm, respectively, to observe and understand the underlying physics of the relation in the layer thickness to the electrical and optical characteristics. Furthermore, variation of the EML/ETL thickness ratio from 1:1 to 5:1 (with thickness in between 10 to 50 nm) had also been conducted. From this work, it is understood that the thickness of the EML layer plays the most important role in TOLED, and by balancing the carrier injections and recombination rate in appropriate EML/ETL thickness ratio, the electrical and optical properties can be improved. By optimizing the EML/ETL thickness and thickness ratio, an optimal forward current of 1.41 mA and luminescent power of 1.93e-18 W/μm has been achieved with both MEH-PPV and PEDOT-PSS layer thickness of 10 nm (1:1 ratio), respectively. The results from this work will assist the improvement of TOLED device to be implemented widely in low power and transparent electronic appliances. -
PublicationAnalysis of power distribution in mach zehnder interferometer polymer-based waveguide for sensing applications( 2022-12)Two Mach Zehnder Interferometer (MZI) polymer-based waveguide designs namely MZI symmetrical and MZI asymmetrical structures were simulated and analyzed using Optiwave OptiBPM10. The two designs with device size of 4000μm x 300μm exhibit clear optical propagation path when light is simulated through them as well as displaying single mode profile. Highest output power was obtained by the MZI symmetrical design at 0.90 a.u, which suggests better waveguide design for sensing applications.
-
PublicationThe study and preparation of polyaniline-graphene oxide as robust counter electrode for dye-sensitized solar cells( 2022-05-18)
;Shukor A.A. ;Nawawi W.I.Badri A.The study of alternative materials and platinum-free counter electrodes (CE) for the development of dye- sensitized solar cells (DSSC) has been highlighted nowadays. Polyaniline (PANI) is one of the most common conducting polymers applied in electrochemical energy storage and conversion technologies such as supercapacitors, rechargeable batteries and fuel cells. However, PANI counter electrodes lack long-term stability due to their low surface area and large volume changes during the release of ions. In that regard, this research work focused on the modification of protonated PANI with graphene oxide (GO) at various weight percentages (wt%) in order to obtain robust CE in DSSC. The structure and formation of PANI, GO and PANI/GO were characterized by Fourier transform infrared (FT-IR) and X-ray diffraction (XRD) analyses. The absorption spectra showed all the characteristic bands of GO, PANI(ES) and PANI/GO. Meanwhile, the incorporation of GO into PANI has enhanced the crystallinity of the composite. As a result, power conversion efficiency (PCE%) of the device with PANI/GO 3 wt% as the counter electrode reaches 6.39%. The excellent photoelectric properties, simple preparation procedure and inexpensive cost allow the PANI/GO electrode to be a credible alternative for DSSCs. -
PublicationElectrochemiluminescence of carbon dots and nitrogen-doped carbon dots from a microwave-assisted method( 2023-10)
;Nurul Izzati Akmal Mohd Azman ;Muhammad Amirul Afiq Abdul Halim ;Siti Aisyah ShamsudinEiichi TamiyaThis research focuses on the use of carbon dots (CDs) and nitrogen-doped carbon dots (NCDs) synthesized using a microwave-assisted method as electrochemiluminescence (ECL) luminophores. CDs have been synthesized using citric acid, while various concentrations of nitrogen-doped CDs have been successfully obtained by varying the amount of urea from 1 to 3 g with citric acid to produce NCD1, NCD,2 and NCD3. The ECL mechanism of CDs and NCDs on screen-printed electrodes has been studied using cyclic voltammetry (CV). ECL emission from as-prepared CDs and NCDs was observed in PBS with potassium persulfate (K2S2O8) as a co-reactant. The addition of potassium chloride (KCl) as a supporting electrolyte displays fast electroreduction of CDs and K2S2O8 to expedite the generation of CDs and peroxydisulfate radicals that simultaneously increase ECL intensity. Furthermore, as the concentration of nitrogen-doped CDs increases, so does the intensity of the ECL. NCD3 shows the highest ECL intensity by an increment of 86.4% in comparison to CDs in PBS with the addition of K2S2O8 and KCl. Finally, optimization of ECL measurement was carried out in terms of CV potential range, concentration of luminophore, supporting electrolyte, and co-reactant using NCD3 luminophore. The CV potential range at 0 to -2 V shows 50 mV of early CV reverse onset potential that resulted in an increase of 52.9% ECL intensity. Meanwhile, 30x dilution of NCD3, 0.1 M of supporting electrolyte KCl, and 0.1 M of co-reactant K2S2O8 show the optimum value to obtain high ECL intensity. -
PublicationThe effect of solvents on the performance of organic light-emitting diodes( 2020-01-08)
;Ismail N.A.N. ;Juhari N.Zakaria N.F.In this paper, we investigate the solvent effect on the performance of surface roughness, absorption spectrum of MEH-PPV thin films and J-V characteristics for MEH-PPV OLED device. The 5 mg emissive layer of poly [2-methoxy-5(2' -ethylhexyloxy)-1, 4-phenylenevinylene), MEH-PPV was diluted with 1ml toluene and 1 ml different mixture of solvent (80% toluene+20 % chloroform) which gives the concentration of 5 mgml-1 respectively. The surface roughness of MEH-PPV film was reduced to 0.3 nm and the red-shifted maximum peak wavelength value were obtained when mixture solvent was used. However, J-V gives higher turn on voltage ∼17 V for the device used mixture solvent compared to device prepared by toluene solvent. Apparently, the two different combination of aromatic and non-aromatic solvent significantly gives an effect on thin films properties and electrical properties of MEH-PPV OLED device.