Options
Mohamed Nasrun Osman
Preferred name
Mohamed Nasrun Osman
Official Name
Mohamed Nasrun, Osman
Alternative Name
Nasrun Osman, Mohamed
Osman, Mohamad N.
Nasrun Osman, Mohd
Osman, Mohamed N.
Osman, Mohamed
Osman, M. N.
Main Affiliation
Scopus Author ID
57189062688
Researcher ID
HKW-4543-2023
Now showing
1 - 10 of 17
-
PublicationDesign of a Compact Reconfigurable Antenna with Hybrid Polarization and Frequency Control for Geofencing Application( 2023-01-01)
;Kandasamy U.D.A frequency reconfigurable antenna for location monitoring is proposed. The antenna developed can be reconfigured at two frequencies with suitable polarization and radiation pattern which designed for geofencing application, thus it either can operate at 1.575 GHz band or 2.45 GHz band. The expected outcome of this work is that when the user is within the geo-fence area it will use WIFI, while when the user exits the geo-fence area, GPS application will be selected. With the use of two switches, the antenna can operate either at band from 2.335 GHz to 2.593 GHz for S11< -10 dB and from 1.546 GHz to 1.588 GHz at S11 <-6 dB. The axial ratio results of less than 3 dB is achieved at 1.575 GHz with a bandwidth of 20 MHz. -
PublicationRadiation Pattern Reconfigurable MIMO Antenna with EBG for Improved Steering Performance( 2023-01-01)
;Gopalakrishnan J.B.Kavitha K.This paper presents a radiation pattern reconfigurable (RPR) multiple-input-multiple-output (MIMO) antenna with an electromagnetic band gap (EBG) for improved steering performance. The designed RPR-MIMO operates at 3.5 GHz with S11 < -10 dB, S21 < -15 dB, steered angle of more than 19° and a minimum average gain of 5 dBi at all steered directions. The proposed EBG structure improved the steering angle that is affected when the RPR is deployed as the MIMO. -
PublicationDesign of Reconfigurable Antenna for RFID System( 2021-07-26)
;Renukka Sivakumar ;Soh Ping Jack ;Salem Al-Bawri S. ;Jayaprakasam S.Saluja N.This paper proposes a reconfigurable antenna for RFID system which can operate between 860MHz to 960MHz frequency that belongs to ultra-high frequency (UHF) band used in Malaysia with the center frequency of 910MHz. One rectangular slot and two triangle-shaped slots are used in designing this antenna. A good circular polarization obtained from the slotted structure along the diagonal axis in the design. RF pin diodes are used as the switching mechanism of the antenna. However, in this work to proof the concept of switching mechanism, copper pins are used as artificial switches. Parasitic elements are deployed on the right and left side of the driven element to assist the radiation pattern reconfiguration. Overall, the proposed antenna able to steer the beam at approximately at -30 , -16 , and 10 with peak gain of 3.2dB and average gain of 2.5dB. With this result, overall coverage of UHF RFID reader antenna could be improved. -
PublicationSwitchable Beam Antenna with Five Planar Element using PIN Diode in Elevation Plane( 2020-09-28)
;Adan F.H. ;Alaydrus M. ;Awal M.R. ;Alomainy A. ;Kamarudin M.R.Majid H.A.This work focuses on the switchable beam parasitic patch antenna for the point to point communication system. This concept gives more flexibility due to their ability to modify the radiation and providing multiple functionalities. This work focuses on two points directly to minimize the number of PIN Diode and to maximize its reconfiguration capabilities. First, the concept of two parasitic element is addressed. The mutual coupling effect between both driven and parasitic has manage to steer the beam to-28{\mathrm{o}}, \ 0{\mathrm{o}} and +28o different angles in a single layer. The design consists of four parasitic elements with full ground and four pin diode switch HPND-4005, five different directions have been reached which are-450,-30{\mathrm{o}}, \ 0{\mathrm{o}}+30{\mathrm{o}} and +450. The parasitic patch antenna has achieved high gain of 8. 92dBi at 5.8 GHz with the beam ability to steer unti145o for both side of the parasitic element. -
PublicationDesign of a 1-Bit Programmable Coding Unit Cell Beamforming Metasurface( 2023-01-01)
;Johari S. ;Amri M.M.Rahim M.K.A.Traditional phased array antennas rely on costly phase shifters to steer beams by manipulating the phase of induced currents in each antenna element. In this study, we introduce a 1-bit coding metasurface as an alternative to traditional phased array antennas for beam control and modulation of electromagnetic waves. The metasurface operates at 5.8 GHz and consists of digitally controlled unit cells, each incorporating a pin diode. These diodes enable binary coding states of "1" and "0" with a significant 180-degree phase difference. The unit cell, with a dimension of 0.81λ x 0.81λ, comprises two metal patches separated by the pin diode on an FR-4 substrate. Simulation results demonstrate the distinct behavior of the metasurface, with the off-state exhibiting a reflection amplitude response of 1.8dB and the on-state showing a reduced amplitude due to on-resistance. The far-field patterns obtained from the simulations clearly indicate a 90-degree change in the radiation pattern between bit "0" and bit "1." This innovative design offers a cost-effective solution for beam control and versatile electromagnetic wave modulation, making it suitable for various applications, including beamforming in radar and communication systems. -
PublicationSmart IoT Flood Monitoring System( 2019-12-16)
;Binti Zahir S. ;Ehkan P. ;Abdul Wahab Y. ;Hambali N.A.M. ;Ali N. ;Bakhit A.S. ;Husin F.Jamaludin R.Flood is one of the natural disasters that cannot be avoided. It happens too fast and affected so many lives and properties. Before this, most of the existing system that has been developed are only focus on certain areas. Other than that, majority of the public cannot monitor and have no idea when the flood going to be happened since they do not have any information and data about the weather condition. By having Smart IoT Flood Monitoring System, this will solve all the drawbacks of the existing system. The proposed system is suitable for cities and village areas. Furthermore, if the public has an internet access, they can monitor what is happening and predict if there is any upcoming flood at the web server. The proposed system is a low cost in design and easy for maintenance. This project will update the water level at the web server and the system will issue an alert signal to the citizens for evacuation so that fast necessary actions can be taken. -
PublicationFlexible Co-Planar Waveguide (CPW)-Fed Y-Shaped Patch UWB Antenna for Off-Body Communication( 2020-03-18)
;Kassim S. ;Soh Ping Jack ;Abdulmalek M. ;Jamaluddin M.H. ;Sabli N.S. ;Yassin M.N.Ismail N.This paper intends to design an Ultra-Wideband (UWB) antenna for future Internet of Things (IoT) applications for off-body Wireless Body Area Networks (WBAN) communication. An antenna based on the Y-shaped patch fed using co-planar waveguide (CPW) line, with a full ground plane is designed. It is implemented on two different substrates, namely a 5mm thick Rogers RO4350B and a 5-mm-thick felt textile. Parametric analysis of antenna is performed by changing its critical dimensions and monitoring parameters such as gain, bandwidth, efficiency, radiation pattern when using both substrates. Besides that, the bending effects towards reflection coefficient and radiation patterns are also studied. The final patch size with the Y-shaped slot is 36 × 40 mm2 for both substrates. The antenna is capable of providing coverage for the bands from 8 to 10 GHz. Finally, the antenna designed on RO4350B substrate outperforms the antenna designed on felt by about four times in terms of bandwidth, with 3.3 GHz (7.7-11 GHz). -
PublicationAnalysis of Aperture Coupled Circular Patch Antenna for Mid-Band 5G( 2021-01-01)
;Isa S.R. ;Kamarudin M.R. ;Bakar H.A. ;Tariqul Islam M.Alaydrus M.This paper presents the design analysis of a compact circular patch antenna. The proposed antennas are excited through an aperture coupled feeding technique. The design of the antenna has been implemented using CST software. The analysis is done based on the antenna simulation output parameter. The reflection coefficient, gain, and radiation pattern is discussed in this work. At resonance frequency of 3.5 GHz, the circular patch aperture coupled fed antenna is managed to get the high gain, good bandwidth, and minimum reflection coefficient (S11). The proposed antenna has high gain of 8.01 dBi and a sufficient bandwidth requirement for mid-band 5G applications. -
PublicationOrbital Angular Momentum Vortex Waves Generation Using Textile Antenna Array for 5G Wearable Applications( 2022-01-01)
;Noor S.K. ;Mawardi Ismail A.Ramli N.The development of wireless systems for fifth-generation technology (5G) has enabled the use of textile antennas for a wide range of applications, and it has now become one of the world's most in-demand technology. As the number of wireless devices and users increase, operators would need higher channel capacity to deliver better possible service to their customers. This paper presents the generation of Orbital Angular Momentum (OAM) vortex waves with mode 1 using a wearable textile antenna. OAM introduces a new scheme called Mode Domain Multiple Access (MDMA). OAM mode is an orthogonal mode with each mode carrying individual signals. Therefore, multiple signals can be sent using the same carrier frequency without additional resources. This allows the channel capacity and spectrum efficiency to be enhanced. The proposed antenna array comprises rectangular microstrip patch elements with an inset fed technique. Felt textile fabric was used as an antenna substrate. A carefully planned feeding phase shift network was used to excite the elements by supplying similar output energy at output ports with the required phase shift value. The generated OAM waves were confirmed by measuring the null in the boresight direction of their 2D radiation patterns as well as simulated phase distribution, intensity distribution and mode purity. The antenna covered portions of the 5G n77 band with a bandwidth of 81.7 MHz and an overall gain of 2.9 dBi. This is, to the best of our knowledge, the first work on generating OAM waves using a flexible textile material. -
PublicationWearable UHF RFID Antenna based Metamaterial( 2021-01-01)
;Khamaruzaman N.S. ;Subahir S.Jamaluddin M.H.This paper presents the development a wearable RFID application that is flexible, compact, low-cost, and suitable for the human body. The study's main goal is to design, build, and test a small and flexible RFID wristband tag antenna with UHF RFID operating frequency at 910 MHz. The result shows a good radiation pattern and an almost ideal VSWR which 1.09. Thus, a wearable UHF RFID tag antenna is designed with a gain of -11.87 dB for bending analysis. The tag features a meander dipole antenna with two square split-ring resonators (SRR) cells. A meander dipole antenna with two square split-ring resonators (SRR) cells is featured on the tag. It's built on a 0.277mm thick photo paper substrate with a dielectric constant of 3.2 and a loss tangent of 0.05. The proposed antenna is then combined with an RFID tag (NXP SL3S1213 UCODE G2iL chip) with an impedance of 23-j224 to evaluate its performance in terms of reflection coefficient, antenna gain, and maximum reading range. The overall size of the antenna tag dimensions is 117 mm × 26 mm.