Now showing 1 - 2 of 2
  • Publication
    Evaluation of flexural properties and characterisation of 10-mm thin geopolymer based on fly ash and ladle furnace slag
    ( 2021)
    Ng Yong-Sing
    ;
    ; ; ;
    Lynette Wei Ling Chan
    ;
    Ng Hui-Teng
    ;
    Ong Shee-Ween
    ;
    Ooi Wan-En
    ;
    Hang Yong-Jie
    The formulation and flexural properties of thin fly ash geopolymers with thickness of merely 10 mm and replacement of ladle furnace slag to fly ash in thin geopolymer were presented. The formulation was discussed in terms of NaOH molarity, solid aluminosilicates-to-liquid alkali activator (S/L) mass ratio, and alkali activator (Na2SiO3/NaOH) mass ratio. Thin fly ash geopolymers with flexural strength and Young's modulus of 6.2 MPa and 0.14 GPa, respectively, were obtained by using 12 M NaOH, S/L ratio of 2.5 and Na2SiO3/NaOH ratio of 4.0. A high Na2SiO3/NaOH ratio was implemented for thin geopolymer synthesis to produce a more viscous slurry which helped to retain the shape of a thin geopolymer. The incorporation of ladle furnace slag up to 40 wt.% reported an increment of 26% in flexural strength up to 7.8 MPa as compared to pure fly ash geopolymers and the stiffness was increased to 0.19 GPa. Denser microstructure with improved compactness was observed as the ladle furnace slag acted as the filler. New crystalline phases of calcium silicate hydrate (C–S–H) were formed and coexisted with the geopolymer matrix, which consequently enhanced the flexural strength of thin fly ash geopolymer. This proved that the ladle furnace slag has the potential to be utilised in geopolymer synthesis and will enhance the flexural properties of thin geopolymers. The flexural performance of thin geopolymers in this study was considerably good as the thin geopolymers exhibited comparatively similar flexural strengths, but a higher strength/thickness ratio as compared to geopolymers with thickness greater than 40 mm.
      2  3
  • Publication
    Unveiling physico-mechanical and acoustical characteristics of fly ash geopolymers through the synergistic impact of density and porosity
    ( 2024-08-15)
    Jia-Ni L.
    ;
    ; ; ;
    Part Wei Ken
    ;
    Phakkhananan Pakawanit
    ;
    Tee Hoe-Woon
    ;
    Hang Yong-Jie
    ;
    Ong Shee-Ween
    ;
    Ooi Wan-En
    This paper investigates the physico-mechanical and acoustic properties of fly ash geopolymers via casting and pressing methods. The existing research lacks comprehensive insight into the relationship between variations in geopolymer density and their impacts on both physico-mechanical properties and sound insulation and absorption capabilities. Geopolymers, as sustainable construction materials, are pivotal in mitigating noise and providing structural strength. To surpass these limitations and achieve either higher or lower densities in geopolymers, alternative approaches are necessary. Casting (non-foamed and foamed with 1.0, 2.0 and 3.0 foam-to-geopolymer paste ratio) and pressing methods were employed to produce a range of geopolymer densities between 1400 kg/m3 – 2200 kg/m3. The pressing method produced a highly dense geopolymer with an excellent compressive strength of 116 MPa. While the lightest geopolymer produced by adding a foaming agent had a compressive strength of 13 MPa. Good sound transmission loss (66.1 dB) was achieved by highly dense pressed geopolymers. Highly porous geopolymers achieved an excellent sound absorption coefficient of 0.79. The density variation and preparation methods greatly affected the pore size and distribution which subsequently affected the acoustical properties of the geopolymers. Manipulating the density and porosity of the geopolymers is essential for creating spaces with optimal acoustics to meet building codes and noise control regulations.
      11  5