Options
Heah Cheng Yong
Preferred name
Heah Cheng Yong
Official Name
Heah, Cheng Yong
Alternative Name
Yong, Heah Cheng
Yong, H. C.
Heah, Cheng Yong
Heah, C. Y.
Cheng-Yong, Heah
Cheng Yong, Heah
Main Affiliation
Scopus Author ID
54402789500
Researcher ID
S-7139-2019
Now showing
1 - 5 of 5
-
PublicationImprovements of flexural properties and thermal performance in thin geopolymer based on fly ash and ladle furnace slag using borax decahydrates( 2022)
;Ng Yong-Sing ;Phakkhananan Pakawanit ;Petrica Vizureanu ;Mohd Suhaimi Khalid ;Ng Hui-Teng ;Hang Yong-Jie ;Marcin Nabiałek ;Paweł Pietrusiewicz ;Sebastian Garus ;Wojciech SochackiAgata ŚliwaThis paper elucidates the influence of borax decahydrate addition on the flexural and thermal properties of 10 mm thin fly ash/ladle furnace slag (FAS) geopolymers. The borax decahydrate (2, 4, 6, and 8 wt.%) was incorporated to produce FAB geopolymers. Heat treatment was applied with temperature ranges of 300 °C, 600 °C, 900 °C, 1000 °C and 1100 °C. Unexposed FAB geopolymers experienced a drop in strength due to a looser matrix with higher porosity. However, borax decahydrate inclusion significantly enhanced the flexural performance of thin geopolymers after heating. FAB2 and FAB8 geopolymers reported higher flexural strength of 26.5 MPa and 47.8 MPa, respectively, at 1000 °C as compared to FAS geopolymers (24.1 MPa at 1100 °C). The molten B2O3 provided an adhesive medium to assemble the aluminosilicates, improving the interparticle connectivity which led to a drastic strength increment. Moreover, the borax addition reduced the glass transition temperature, forming more refractory crystalline phases at lower temperatures. This induced a significant strength increment in FAB geopolymers with a factor of 3.6 for FAB8 at 900 °C, and 4.0 factor for FAB2 at 1000 °C, respectively. Comparatively, FAS geopolymers only achieved 3.1 factor in strength increment at 1100 °C. This proved that borax decahydrate could be utilized in the high strength development of thin geopolymers. -
PublicationThin fly ash/ ladle furnace slag geopolymer: Effect of elevated temperature exposure on flexural properties and morphological characteristics( 2022-06-15)
;Ng Yong-Sing ;Pakawanit P. ;Chan L.W.L. ;Ng Hui-Teng ;Ong Shee Ween ;Ooi Wan EnHang Yong-JieThe flexural properties and thermal performance of 10 mm-thin geopolymers made from fly ash and ladle furnace slag were evaluated before and after exposure to elevated temperatures (300 °C, 600 °C, 900 °C, 1100 °C and 1150 °C). Class F fly ash was mixed with liquid sodium silicate (Na2SiO3) and 12 M sodium hydroxide (NaOH) solution using aluminosilicate/activator ratio of 1:2.5 and Na2SiO3/NaOH ratio of 1:4 to synthesise thin fly ash (FA) geopolymers. 40 wt% of ladle furnace slag was partially replacing fly ash to produce fly ash/slag-based (FAS) geopolymers. Thermal treatment enhanced the flexural strength of thin geopolymers. In comparison to the unexposed specimen, the flexural strength of FA geopolymers at 1150 °C and FAS geopolymers 1100 °C was increased by 161.3% to 16.2 MPa and 208.9% to 24.1 MPa, respectively. A more uniform heating was achieved in thin geopolymers which favoured the phase transformation at high temperatures and contributed to the substantial increase in flexural strength. The joint effect of elevated temperature exposure and the incorporation of ladle furnace slag further improved the flexural strength of thin geopolymers. The calcium-rich slag refined the pore structure and increased the crystallinity of thin geopolymers which aided in high strength development.1 -
PublicationEvaluation of flexural properties and characterisation of 10-mm thin geopolymer based on fly ash and ladle furnace slag( 2021)
;Ng Yong-Sing ;Lynette Wei Ling Chan ;Ng Hui-Teng ;Ong Shee-Ween ;Ooi Wan-EnHang Yong-JieThe formulation and flexural properties of thin fly ash geopolymers with thickness of merely 10 mm and replacement of ladle furnace slag to fly ash in thin geopolymer were presented. The formulation was discussed in terms of NaOH molarity, solid aluminosilicates-to-liquid alkali activator (S/L) mass ratio, and alkali activator (Na2SiO3/NaOH) mass ratio. Thin fly ash geopolymers with flexural strength and Young's modulus of 6.2 MPa and 0.14 GPa, respectively, were obtained by using 12 M NaOH, S/L ratio of 2.5 and Na2SiO3/NaOH ratio of 4.0. A high Na2SiO3/NaOH ratio was implemented for thin geopolymer synthesis to produce a more viscous slurry which helped to retain the shape of a thin geopolymer. The incorporation of ladle furnace slag up to 40 wt.% reported an increment of 26% in flexural strength up to 7.8 MPa as compared to pure fly ash geopolymers and the stiffness was increased to 0.19 GPa. Denser microstructure with improved compactness was observed as the ladle furnace slag acted as the filler. New crystalline phases of calcium silicate hydrate (C–S–H) were formed and coexisted with the geopolymer matrix, which consequently enhanced the flexural strength of thin fly ash geopolymer. This proved that the ladle furnace slag has the potential to be utilised in geopolymer synthesis and will enhance the flexural properties of thin geopolymers. The flexural performance of thin geopolymers in this study was considerably good as the thin geopolymers exhibited comparatively similar flexural strengths, but a higher strength/thickness ratio as compared to geopolymers with thickness greater than 40 mm.2 3 -
PublicationUnveiling physico-mechanical and acoustical characteristics of fly ash geopolymers through the synergistic impact of density and porosity( 2024-08-15)
;Jia-Ni L. ;Part Wei Ken ;Phakkhananan Pakawanit ;Tee Hoe-Woon ;Hang Yong-Jie ;Ong Shee-WeenOoi Wan-EnThis paper investigates the physico-mechanical and acoustic properties of fly ash geopolymers via casting and pressing methods. The existing research lacks comprehensive insight into the relationship between variations in geopolymer density and their impacts on both physico-mechanical properties and sound insulation and absorption capabilities. Geopolymers, as sustainable construction materials, are pivotal in mitigating noise and providing structural strength. To surpass these limitations and achieve either higher or lower densities in geopolymers, alternative approaches are necessary. Casting (non-foamed and foamed with 1.0, 2.0 and 3.0 foam-to-geopolymer paste ratio) and pressing methods were employed to produce a range of geopolymer densities between 1400 kg/m3 – 2200 kg/m3. The pressing method produced a highly dense geopolymer with an excellent compressive strength of 116 MPa. While the lightest geopolymer produced by adding a foaming agent had a compressive strength of 13 MPa. Good sound transmission loss (66.1 dB) was achieved by highly dense pressed geopolymers. Highly porous geopolymers achieved an excellent sound absorption coefficient of 0.79. The density variation and preparation methods greatly affected the pore size and distribution which subsequently affected the acoustical properties of the geopolymers. Manipulating the density and porosity of the geopolymers is essential for creating spaces with optimal acoustics to meet building codes and noise control regulations.11 5 -
PublicationThin fly ash/ ladle furnace slag geopolymer: Effect of elevated temperature exposure on flexural properties and morphological characteristics( 2022-06-15)
;Yong-Sing Ng ;Pakawanit P. ;Chan L.W.L. ;Ng Hui-Teng ;Ong Shee-Ween ;Ooi Wan-EnHang Yong-JieThe flexural properties and thermal performance of 10 mm-thin geopolymers made from fly ash and ladle furnace slag were evaluated before and after exposure to elevated temperatures (300 °C, 600 °C, 900 °C, 1100 °C and 1150 °C). Class F fly ash was mixed with liquid sodium silicate (Na2SiO3) and 12 M sodium hydroxide (NaOH) solution using aluminosilicate/activator ratio of 1:2.5 and Na2SiO3/NaOH ratio of 1:4 to synthesise thin fly ash (FA) geopolymers. 40 wt% of ladle furnace slag was partially replacing fly ash to produce fly ash/slag-based (FAS) geopolymers. Thermal treatment enhanced the flexural strength of thin geopolymers. In comparison to the unexposed specimen, the flexural strength of FA geopolymers at 1150 °C and FAS geopolymers 1100 °C was increased by 161.3% to 16.2 MPa and 208.9% to 24.1 MPa, respectively. A more uniform heating was achieved in thin geopolymers which favoured the phase transformation at high temperatures and contributed to the substantial increase in flexural strength. The joint effect of elevated temperature exposure and the incorporation of ladle furnace slag further improved the flexural strength of thin geopolymers. The calcium-rich slag refined the pore structure and increased the crystallinity of thin geopolymers which aided in high strength development.1