Options
Faradilla Aziz
Preferred name
Faradilla Aziz
Official Name
Faradilla, Aziz
Main Affiliation
Now showing
1 - 2 of 2
-
PublicationSimulation and characterization of an inverter logic gate by utilizing InGaAs-based planar devices( 2023-12)
;Fauzi PackeerA. K. SinghElectronic circuits known as logic gates can perform basic logical operations like inverters, AND, and OR gates. These logic gates serve as the basis for digital electronics, and they are a common component in various electronic devices, such as computers, smartphones, and other types of digital systems. This research presents an inverter logic gate made of planar devices, which have significantly simpler structures than multi-layered transistors and diodes, namely the self-switching diode (SSD) and side-gated transistor (SGT). The inverter logic gate is realized by simply connecting both SSD and SGT in parallel. The electrical characteristics and performances of the inverter logic gate are assessed based on InGaAs material using SILVACO Inc.'s ATLAS device simulator software. The simulation results show that the functionality of the proposed planar inverter is comparable to that of a conventional inverter logic gate based on the standard truth table of the device. This has demonstrated the feasibility of building logic gates using a combination of SSDs and SGTs. In addition, the planar structure of SSD and SGT allows for a relatively low-cost device fabrication process as well as offering a high-frequency operation due to low parasitic elements in the devices. -
PublicationSimulation of InGaAs-based self-switching diodes as sub-terahertz rectifiers( 2022-12)
;Fauzi PackeerA.K. SinghAbstract. A self-switching device (SSD) is a new device concept -which can be simply realized by forming insulating trenches into a semiconductor layer, using a single nanolithography process. SSDs can be utilized as rectifiers since the device's current-voltage (I-V) characteristic is comparable to that of a conventional diode. The simulation of two InGaAsbased SSDs with parallel connection using ATLAS device simulator for similar and different lengths of both SSDs (L1 and L2) is presented in this paper. The simulation results show that the InGaAs-based SSDs are able to operate up to sub-terahertz (THz) frequencies. As expected, lowering either L1 or L2 will not only increase the device’s cut-off frequency, fc, but also degrading the device’s rectification performance (i.e., reducing the value of curvature coefficient, γ). The highest cut-off frequency achieved in this work was 0.27 THz with γ ~18V-1 when L1 = 0.8 μm and L2 = 0.4 μm.1 4