Options
Lim Eng Aik
Preferred name
Lim Eng Aik
Official Name
Lim, Eng Aik
Alternative Name
Aik, Limeng
Lim, E. A.
Main Affiliation
Scopus Author ID
23491376300
Researcher ID
EKL-8415-2022
Now showing
1 - 2 of 2
-
PublicationMICROWAVE ABSORPTION ANALYSIS ON HEATED EDIBLE SPIRULINA WITH VARIOUS TEMPERATURES( 2023-05-01)This paper discusses the microwave absorption analysis of edible Spirulina by using WR62 and WR90 rectangular waveguides in conjunction with Agilent P-series Vector Network Analyzer (PNA). Heat might lead to the degradation of spirulina. This phenomenon involves the chemical and physical reaction that is associated with the variation of dielectric properties. These properties determine the propagation mechanism of microwaves within the sample or material. Hence, an assessment method to detect a nutrient change in spirulina due to heat is necessary. In this context, a microwave absorption measurement system was developed to study the reflection coefficient, transmission coefficient, and absorption coefficient of Spirulina tablets over temperature. The transmission/Reflection line method is well-known because it is non-destructive and rapid in analyzing chemical and physical properties. In this work, Spirulina tablet is used since it is a popular food supplement that is believed to be able to treat diseases is and good for health. The reflection, transmission, and absorption measurements were conducted on Spirulina from 12.4GHz to 18GHz.
-
PublicationIn-situ Noise Measurement and Analysis for the Motorcycle Muffler( 2020-01-01)
;Chuah H.G.Lok, Chip HaoNoise from the vehicles is one of the noise pollutions to the environment. The noises emitted by the vehicles have to obey the requirement of regulation of maximum sound pressure level permitted for respective vehicles. In this study, the aim is to reduce the noise emitted from the motorcycle muffler. The noise emitted from the motorcycle muffler is analyzed and measured using a sound level meter. The average sound pressure level of the motorcycle muffler is determined in certain conditions. The sound pressure levels for original installed muffler are recorded as 76.4dB, 79.5dB and 82.3dB under the constant speed of 10km/hr, 20km/hr and 30km/hr respectively by engaging 2nd gear. For the acceleration with the scope of 0 km/hr to 30 km/hr, the difference of sound pressure level between 2nd and 4th gear engaged is 5.4dB. The study is continued by using a modified muffler which contains sound absorptive materials. The absorptive materials chosen are glass wool, cotton and Styrofoam and they are taking turn to be placed into the modified muffler to reduce the sound pressure level. Then the experiment is repeated. By applying 100g absorptive materials in the modified muffler, the reduction of sound pressure level are recorded as 12.6% (glass wool), 7.5% (cotton) and 4.4% (Styrofoam) compared with original installed muffler while 2nd gear engaged. Styrofoam is observed does not perform significantly in absorbing sound or noise in this study. Glass wool demonstrates relatively better sound energy absorption compared with cotton. In general, soft and porous materials are considered good performance in sound absorption. Denser materials are better at soundproofing or sound blocking. Therefore, glass wool with relatively higher density among the investigated absorptive materials in this study has the greatest sound absorption performance.