Options
Nurulhuda Bashirom
Preferred name
Nurulhuda Bashirom
Official Name
Nurulhuda, Bashirom
Alternative Name
Bashirom, Nurulhuda
Bashirom, N. H.
Bashirom, Nurhuda
Bashirom, N.
Main Affiliation
Scopus Author ID
55566919700
Researcher ID
V-8232-2019
Now showing
1 - 1 of 1
-
PublicationFormation of Fe-doped ZrOâ‚‚ nanotube arrays in glycerol/formamide at varying fluoride content for Cr(VI) photoreduction( 2024-01-01)
;Hanis Nadirah Che Fauzi N. ;Juliana Jelaini F.Lockman Z.Fe-doped ZrO2nanotubes (Fe-ZNTs) were produced by anodizing a Zr-5 wt% Fe (Zr-5Fe) alloy in a mixture of fluoride-containing glycerol/formamide (FA) (1:1 ratio)/1 vol% H2O at 50 V for 3 h in different concentrations of ammonium fluoride (NH4F) (0.3, 0.5, and 1.0 wt%). These materials were synthesized to serve as photocatalysts for the removal of hexavalent chromium, Cr(VI) ions by photoreduction. To crystallize the oxide film, the as-anodized Fe-ZNTs were subjected to annealing at 500 °C for 3 h in a tube furnace. The morphology and crystal structure of the annealed Fe-ZNTs were analyzed using Field-emission scanning electron microscopy (FESEM) and X-ray diffraction (XRD), respectively. The surface functional groups and surface chemical of the samples were analyzed by Fourier transform infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS), respectively. The formation of hollow structure of the Fe-ZNT was validated by High-resolution transmission electron microscopy (HRTEM). The dimensions of the Fe-ZNTs were measured using Image J. UV-Visible spectroscopy was used to determine the Cr(VI) concentration remaining in the sample after photoreduction. From the FESEM micrographs, the diameter of the Fe-ZNTs was enlarged with higher fluoride content, while the length abruptly decreased due to excessive etching of the oxide film at oxide|electrolyte interface. The XRD results indicate the high intensity of tetragonal-ZrO2in high fluoride content after annealing. From the photocatalytic results of 30 ppm Cr(VI) under sunlight, the Fe-ZNTs synthesized in 1.0 wt% NH4F exhibited the highest Cr(VI) removal efficiency with 100 % after 5 h due to enhanced Cr(VI) adsorption and high photoactivity of tetragonal-ZrO21